
unitary may allow us to reveal the measure of a known
physical system to be unitary. If the Universe is not only a
computer, there must be a phenomenon, which could be
experimentally detected as a weak inherent phase malfunc-
tion. The effect is most probably so weak that it could hardly
be distinguished among usual causes of the malfunction, but
the experiment is to answer this question.
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Proximity Action theory
of superconductive nanostructures

M A Skvortsov, A I Larkin, M V Fe|̄gel'man

Abstract. We review a novel approach to the superconductive
proximity effect in disordered normal±superconducting (N-S)
structures. The method is based on the multicharge Keldysh
action and is suitable for the treatment of interaction and
fluctuation effects. As an application of the formalism, we
study the subgap conductance and noise in two-dimensional
N-S systems in the presence of the electron ± electron interac-
tion in the Cooper channel. It is shown that singular nature of
the interaction correction at large scales leads to a nonmonoto-
nuos temperature, voltage and magnetic field dependence of the
Andreev conductance.

1. Introduction

A superconductor in contact with a normal metal induces
Cooper correlations between electrons in the normal region,
the phenomenon known as the proximity effect. Its micro-
scopic origin lies in Andreev reflection [1] of an electron into a
hole at the normal metal±superconducting interface. The
probability of Andreev reflection and thus the strength of the
proximity effect is determined by the transparency of the N-S
interface and the nature of electron propagation in the N part
of the structure. Disorder in the normal conductor near theN-
S contact was shown theoretically [2 ± 5] to increase consider-
ably the effective probability of Andreev reflection (see Ref.
[6] for a recent review from the experimental viewpoint).

The standard semiclassical theory of N-S conductivity
[2 ± 5], based either on the traditional nonequilibrium super-
conductivity approach [7] or on the scattering formalism [5, 8],
usually neglects interaction effects in the N part of the
structure. However, in low-dimensional structures, Cou-
lomb interaction in the normal diffusive region gets
enhanced [9], which may affect strongly the Andreev con-
ductance and noise.

In this paper we address the effect of interaction between
electrons in the normal part of an N-S structure on the charge

transport through the system. To study a system with
interaction a novel theoretical method should be developed
since neither of the above-mentioned approaches can handle
interaction corrections. Indeed, the scattering matrix formal-
ism relying on the linear relation between the outgoing and
incoming states is a priori a one-particle description. On the
other hand, Larkin ±Ovchinnikov kinetic equation [7] can be
generalized to allow for (at least some part of) interaction
corrections, but its practical solution seems hardly possible
beyond the first order of perturbation theory in interaction
strength [10, 11].

An appropriate formalism has been developed in Ref. [12]
in the framework of the Keldysh action for disordered
superonductors [13]. We start from the fully microscopic
Lagrangian describing interacting electrons in the diffusive
conductor. Then, successively integrating over electronic
degrees of freedom in the normal conductor we end up with
the Proximity Action, Sprox�QS;QN�, which is a functional of
two matrices, QS and QN, describing the states of the
superconductive and external normal terminals of the N-S
structure (cf. Fig. 1). Once the form of the Proximity Action is
known, one can easily calculate the conductivity of the
system, current noise, and, in principle, higher correlators of
currentandeventhefullstatisticsoftransmittedcharge[14,15].
The Proximity Action approach bears an obvious analogy
with the scattering matrix approach [3, 5] as both describe
transport properties in terms of the characteristics of the
terminals (stationary-state Green functions of the terminals
QS;N in the former versus asymptotic scattering states in the
latter approach). In this respect, the Proximity Action
method also shares the logic of Nazarov's circuit theory of
Andreev conductance [4]. On the other hand, the Keldysh
action approach is a natural generalization of the kinetic
equation for dirty superconductors in the case of fluctuating
fields. The Larkin ±Ovchinnikov kinetic equation then
emerges as a saddle point equation for theKeldysh action [13].

As an application of the formalism, we will study charge
transport in two-dimensional (2D) N-I-S structures shown in
Fig. 1 at low (compared to the S gap D) temperature and
voltages, and arbitrary ratio t � RD=RT, where RD and RT

are the resistances of the diffusive normal conductor, and of
the tunnel barrier in the normal state, correspondingly. We
will calculate the Andreev conductance and noise of such
systems in the presence of Cooper interaction in the normal
conductor modified by the Coulomb interaction [16 ± 18], as a
function of the `decoherence time' of an electron and the
Andreev-reflected hole, �h=O�, where

V

2L

S

N
I

2d

R

Figure 1. A small superconductive island (S) of size 2d connected to a

reservoir (R) through a tunnel barrier (I) and a dirty normal film (N) of

size 2L4 2d.
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O� � max�T; eV; eDH=c� :

We will show that the Cooper interaction effects in 2D are
substantially different from those in the 1D case considered in
Ref. [11]. In particular, the lowest-order relative correction
dGA=GA scales as ÿl ln�L=d� and grows with the size of the
system L, provided that O�5ETh � �hD=L2. We will sum up
the main logarithmic terms of the order of �l ln�L=d��n and
find that Cooper repulsion may lead to a nonmonotonuos
dependence of GA on RD=RT and on the decoherence energy
scale O�.

In this paper we will not consider the weak localization
[19, 20] and interaction-induced corrections [9] to the sheet
conductance, s, of the normal metal assuming that it is
relatively large, g � ��h=e2�s4 ln�L=d�. We will also not
take into account the effect of the Coulomb zero-bias
anomaly (ZBA) [9, 21] on the Andreev conductance. This
effect was considered in [13] within the lowest-order tunneling
approximation. It was shown, similar to the Coulomb ZBA
problem for normal conductors (cf., e.g., Ref. [22]), that it can
be strongly suppressed if the bare long-range Coulomb
potential is screened, e.g., by placing a nearby metal gate.
This is the situation we assume in the present paper.

Another limitation of the present discussion is that we will
consider the case of a 2D geometry of the current flow
between the superconductive and normal electrodes of the
structure, as shown in Fig. 1. This will make possible to
construct a unified functional renormalization group treat-
ment that takes into account modifications of the proximity
effect strength both due to multiple Andreev reflections and
due to Cooper-channel repulsion. Note that the sample
geometry should not necessarily be symmetric as shown in
Fig. 1: the only important feature of the geometry chosen is
the 2D spreading of the current flow.

2. Multicharge Proximity Action

Here we present a brief overview of the Proximity Action
approach to charge transport in N-I-S systems elaborated in
Ref. [12]. Eliminating all dynamic degrees of freedom in the
normal diffusive conductor, one reduces the total action of
the system to the formSprox�QS;QN�, with thematricesQS and
QN having the meaning of the steady-state Keldysh Green
function of the S island and external normal terminal labeled
by R in Fig. 1, respectively. In the low frequency limit,
o5ETh � D=L2, when diffusive electron motion spreads
over the whole conducting region during one circle of the
external voltage, the resulting Proximity Action has the form

Sprox�QS;QN� � ÿip2g
X1
n�1

gn Tr�QSQN�n : �1�

The action is known once the infinite set of parameters
(`charges') gn is specified.

Remarkably, for noninteracting systems, knowledge of
fgng is equivalent to knowledge of the whole distribution
function P�T� of transmission coefficients of the system. To
formulate this analogy, it is convenient to make a Fourier
transform from fgng to a 2p-periodic function u�x� of an
auxiliary continuous variable x:

u�x� �
X1
n�1

ngn sin nx : �2�

The relation between the function u�x� and the generating
function of transmission coefficients introduced by Nazarov
[3] (cf. also Ref. [23]) was established in Ref. [12] by direct
comparison:

4p2g u�x� �
�1
0

T sin x

1ÿ T sin2�x=2� P�T� dT : �3�

For interacting systems and systems with fluctuations [24],
Eqn (3)may be interpreted as a generalization of the notion of
transmission coefficients.

Determination of fgng is a separate task related with
elimination of fast modes in the normal conductor. We will
discussed it later, while now we will explain how to obtain
transport properties from the Proximity Action (1). In order
to study conducting properties of the system, we apply a bias
voltageV between the superconducting and normal terminals
of the structure and study its current response. The resulting
expressions for the Andreev conductance (in units of e2=�h)
and noise power take the form [12]

GA � 4pg ux
p
2

� �
; �4�

and

hIoIÿoi � e2GA

3�h

n
�3ÿ PS�C�o�

� 1

2
PS �C�oÿ 2eV� �C�o� 2eV��

o
; �5�

where C�o� � o coth�o=2T�, and the superconductive noise
function PS is given by

PS � 1ÿ uxxx�p=2�
2ux�p=2� : �6�

The quantity F � �2=3�PS gives the reduction of the shot
noise between the normal and superconducting terminals,
hIIishot � F ehIi, compared to its Poissonian value for a single
electron tunneling, and can be identified with the Fano
factor [25].

For an N-S system, all quantities are expressed in terms of
derivatives of u�x� at x � p=2. The counterparts of Eqns (4)±
(6) for the case when the S island is in the normal state can also
be expressed in terms of the same function u�x�, but with
derivatives taken at x � 0. The conductance of the system
G � 4pg ux�0�, while the current ± current correlator is given
by Eqn (5) with the replacements GA ! G, 2eV! eV, and
PS ! PN � 1ÿ 2uxxx�0�=ux�0�.

In principle, one can go further and calculate the full
charge transfer statistics in terms of the function u�x�
following the derivation [14, 15] in the scattering matrix
technique.

3. Functional RG

We have seen that the set fgng or, equivalently, the function
u�x� encodes all information about charge transmission
through the system. Now we will discuss how to determine
the charges gn for the system shown in Fig. 1.

The starting point is the microscopic Keldysh action for
an S island in contact with a disordered metal, derived in Ref.
[13]. It can be represented as a sum of the bulk and boundary
contributions. The bulk action, Sbulk, is a functional of three
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fluctuating fields: the matter field Q�r; t; t0� in the film, the
electromagnetic potential, and the order parameter field used
to decouple the quartic interaction vertex in the Cooper
channel. Q�r; t; t0� is a matrix in the direct 4� 4-dimensional
product K
N of the Keldysh and Nambu±Gor'kov spaces,
its average value giving the electron Green function in the
Keldysh form, Ĝ�r; r�. In the tunneling Hamiltonian approx-
imation, the boundary action,

Stun�QS;Q� � ÿ ipGT

4
TrQSQ�d� ; �7�

describes an elementary tunneling process between the
S island and the N metal. Here GT � �h=e2RT is the
dimensionless tunneling conductance of the interface, and
Q�d� is taken at the metal side of the N-S boundary.

The next step is to eliminate degrees of freedom in the N
film. 2D geometry of the system suggests that this procedure
can be realized with the help of the Renormalization Group
(RG) approach by successive integrating over fast modes in
the bulk. As a result, the boundary action (7) which initially
described single Andreev reflection process gets modified by
multiple Andreev reflections and acquires the form

Sbound � ÿip2g
X1
n�1

gn�z�Tr�QSQ�r��n ; �8�

where the logarithmic variable z � 2 ln�r=d� � ln�od=O�,
od � D=d2 is the high-frequency cutoff, and O � D=r2 is the
energy associated with the current scale r. At the energy
scale od, the multicharge action (8) reduces to Eqn (7):
g1�0� � a � GT=4pg, and gn�2�0� � 0, and, consequently,
u�x; z � 0� � a sin x.

Under the action of the RG, the charges gn�z� are
changing. In the zero-energy limit, when the Cooperon
decoherence energy O� is smaller than the current RG energy
scale O, both diffusons and Cooperons contribute to the RG
equation which, written in terms of the function u�x; z�,
reads [12]

uz � uux � ÿl�z� u p
2
; z

� �
sin x : �9�

The r.h.s. of the functional RG equation (9) is due to the
Cooper channel interaction with the scale-dependent con-
stant l�z� given by [13, 17]

l�z� � ld � lg tanh lgz
1� �ld=lg� tanh lgz ; �10�

where ld is defined at the energy scale od. At z >
���
g
p

,
Coulomb repulsion in 2D drives l�z� toward the
Fikel'stein's fixed point lg � 1=2p

���
g
p

. In deriving Eqn (9)
we neglected the weak localization and interaction correc-
tions to the film conductance g, making use of the small
parameter z=g5 1.

In the absence of Cooper channel interaction, Eqn (9)
acquires the form of the Euler equation. In this case it is
convenient to rewrite it in terms of the new variable
t � RD=RT � az and the function U�x; t� � u�x; z�=a as
Ut �UUx � 0, with the initial condition U�x; 0� � sin x. In
this representation, all information about geometry of the
system had gone, and the Euler equation forU�x; t� describes
evolution of fgng for any (not only 2D) system consisting of a
tunnel barrier and a diffusive conductor in the zero-energy
limit [12, 23, 26].

If the decoherence energy scaleO� > ETh, thenCooperons
become inoperative at the latest stage of renormalization
procedure, where z > z� � ln�od=O��. In this case the
functional RG equation reduces to

~uz � ~u~ux � 0 ; �11�

where ~u�x� � �u�x� ÿ u�pÿ x��=2. The function ~u�x; z; z��
bears the knowledge of the decoherence scale O� through the
initial condition ~u�x; z�; z�� � �u�x; z�� ÿ u�pÿ x; z���=2,
where u�x; z�� is the solution of Eqn (9) at the upper border
of its applicability, z � z�. Note, however, that crossover
from the z < z� to z > z� regimes is described by Eqns (9), (11)
with the logarithmic accuracy only.

The RG equations (9) and (11) should be integrated until
we reach the perfect boundary between the N film and the
reservoir. Then, substituting Q�L� � QN into the effective
boundary action (8), we arrive at the Proximity Action (1)
with gn � gn�zTh�, where zTh � ln�od=ETh� � 2 ln�L=d�.

4. Andreev conductance

Now we proceed with the analysis of the functional RG
equations derived in the previous section. We start from the
zero-energy limit, O� < ETh, described by Eqn (9). In the
absence of interaction one readily reproduces the known
result [3, 4] for the Andreev conductance:

G
�0�
A � GT

sinY�t�
1� t sinY�t� � GD

t sinY�t�
1� t sinY�t� ; �12�

where t � azTh � RD=RT, RD � ln�L=d�=2ps, and the func-
tion Y�t� satisfies Y�t� � t cosY�t�.

It is often convenient to characterize the system with the
help of the effective interface resistance RT;eff defined formally
through RA � RD � RT;eff. For a noninteracting system, the
ratio RT;eff=RT as a function of t � RD=RT is shown in Fig. 2
by the dashed line. It behaves as tÿ1 for t5 1 and saturates at
1 for t4 1. Correspondingly, G

�0�
A � G2

T=GD for t5 1, and
G
�0�
A � GD for t4 1.
At relatively small scales, the effect of Cooper interaction

described by the r.h.s. of Eqn (9) can be considered perturba-
tively. The magnitude of the first-order interaction correction
to the quasiclassical conductance (12), dGA � ÿlzG�0�A ,
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Figure 2. Dependence of the effective interface resistance RT;eff�t�=RT vs.

t � RD=RT for different values of l=a obtained by numerical solution of

Eqn (9) for l�z� � const. The dashed line corresponds to the noninteract-

ing case, l � 0.
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grows [12] with the system size L and eventually becomes of
the order of G

�0�
A at z � 1=l. Comparing this scale to the scale

z � 1=a, corresponding to the crossover from the tunneling
(t5 1) to diffusive (t4 1) limits, one can distinguish between
the regimes of strong, l4 a � GT=4pg, and weak, l5 a,
repulsion (still, in both cases l5 1).

In general, the functional RG equation (9) does not allow
an analytical solution, and should be solved numerically. For
clarity, we will assume hereafter that the interaction constant
had reached the Finkel'stein's fixed point lg � 1=2p

���
g
p

, so
that strong repulsion corresponds to a relatively weak tunnel-
ing conductance GT 5 2

���
g
p

, and vice versa. The effective
interface resistance RT;eff normalised to the tunneling resis-
tance RT as a function of t � RD=RT is plotted in Fig. 2 for
different values of the ratio lg=a. For the case of strong
repulsion, lg 4 a, RT;eff�t� very quickly (at t � a=lg 5 1)
reaches its asymptotic value and saturates at
RT;eff�t � 1� � �2lg=a�RT. The limiting value RT;eff�1�
decreases with the decrease of lg=a up to lg=a � 1. At
smaller lg=a, corresponding to the case of weak repulsion,
RT;eff�1� starts to grow again, and reaches an asymptotic
behavior RT;eff�1�=RT � 1:19a=lg at lg=a5 1. In this limit
RT;eff�t� reaches its asymptotic value at large scale t � a=lg.

The data of Fig. 2 demonstrate that in a 2D system the
limits l! 0 and RD !1 do not commute: for any small but
finite lg, RT;eff�t�=RT will eventually (though, at very large t)
deviate from the noninteracting dependence (dashed line in
Fig. 2) and become large.

At large enough temperature, voltage, or magnetic field,
O� � max�T; eV; eDH=c�4ETh, the resistance of the struc-
ture is given by [12]

RA�t; t�� � RD � RT;eff�t�� ; �13�

where t� � az� � �GT=4pg� ln�od=O��. Therefore, a nonmo-
notonous behavior of RT;eff�t�� will manifest itself in a
nonmonotonous temperature, voltage and magnetic field
dependence of the subgap conductance. The unusual
enhancement of conductivity with the increase of the
decoherence energy scale O� is most pronounced in the limit
of weak repulsion, GT 4 2

���
g
p

. Since the total resistance is the
sum ofRT;eff andRD, cf. Eqn (13), the magnitude of the effect
is determined by the ratio RT;eff=RD which has a maximum at
t � GT=

���
g
p

. An example of such a nonmonotonous depen-
dence of GA�O�� is shown in Fig. 3. The curves differ by the
ratio t � RD=RT and correspond to GT � 10

���
g
p

(i.e.,
lg=a � 0:2).

We emphasize that the described nonmonotonous
behavior has nothing to do with the usual `finite-bias'
conductance anomaly in N-S structures with good inter-
faces [11, 27], which occur at �T; eV� � ETh even in the
absence of interaction in the N region. In simple terms the
origin of this new effect can be understood as follows:
repulsion in the normal metal produces a superconductive
`gap function' in the normal conductor, DN, with the
negative (compared to DS in a superconductor) sign. Due
to its opposite sign, DN decreases the conductance of the
structure, therefore any decoherence that reduces DN leads to
the increase of the conductance.

5. Noise

Now we turn to the analysis of the noise function PS. For a
noninteracting system in the zero-energy limit it is given

by [12, 28]

P
�0�
S �t� � 1� 1�Y�t� tanY�t� � 3Y�t� cotY�t�

2�1�Y�t� tanY�t��4 : �14�

Equation (14) describes a crossover from the Poissonian
(PS � 3) to the sub-Poissonian (PS � 1) [29] character of the
noise as the system evolves from the tunnel (t5 1) to the
diffusive (t4 1) limits.

In the presence of interaction, PS can be estimated,
qualitatively, by comparing the effective tunneling resis-
tance, RT;eff, with the diffusive resistance, RD. For
RT;eff 4RD, PS � 3, while in the opposite case PS � 1. If we
again assume that l�z� � lg, then PS will become a function
of two parameters: t � RD=RT and lg=a � 2

���
g
p

=GT. The
boundaries between the regions with PS � 3 and PS � 1 on
the plane (log t, log�GT=

���
g
p �) are sketched in Fig. 4.

In the case of strong repulsion, GT 5
���
g
p

, RT;eff very
quickly (at t � GT=

���
g
p

) saturates at

RT;eff�1� �
4
���
g
p
GT

RT :
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Figure 3.Dependence of the Andreev conductanceGA�O�� (normalized to

the zero-energy value) on the ratioO�=ETh for different values of t. For all
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Figure 4. Schematic map of the noise coefficient PS as a function of the

tunnel and diffusive resistances in the presence of Cooper repulsion

l � lg. Dark area refers to the tunnel limit PS � 3, whereas light regions

correspond to the diffusive regime with PS � 1.
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Then one obtains [12] Pint
S � PN�RD=RT;eff�1��, where

PN�t� � 1� 2=�1� t�3 is the noise function [3, 12] for the
system with the N island. Thus, in the limit GT 5

���
g
p

, the
crossover between the tunnel and diffusive character of noise
is shifted to t � ���

g
p

=GT 4 1, see Fig. 4.
In the limit of weak repulsion, GT 4

���
g
p

, the situation is
more interesting. For t � 1, interaction corrections can be
neglectedandPS isgivenbythenoninteractingexpression (14).
So, at t � 1, PS decreases from 3 to 1, the corresponding
boundary being shown in Fig. 4. Later, at t � GT=

���
g
p

4 1
(when RD � �h=e2

���
g
p

) interaction corrections become rele-
vant. In this region, RT;eff is of the order of RD, and one
may anticipate that PS will deviate from 1. For even larger t
when resistance is dominated by the diffusive conductor, PS

will eventually reduce down to 1. This crossover region is
marked in Fig. 4 by the dashed lines. The function PS in the
crossover region t � GT=

���
g
p

4 1 obtained by numerical
solution of Eqn (9) is plotted in Fig. 5 as a function of
s � lgz � �lnL=d�=p ���

g
p � 2�e2=�h�RD

���
g
p

. It has a minimum
PS � 0:99 at s � 0:40 and a maximum PS � 1:28 at
s � 3:25.

Finally, we consider the O� dependence of the noise
power. In the case of weak interaction, PS decreases (at
t; t�4 1) with the increase of the Cooperon decoherence
energy scale O�, as if the system is becoming more diffusive.
This trend is opposite to what one has in the noninteracting
case when the increase of O� drives the system toward the
tunnel limit, thus, increasing PS. In the limit of strong
repulsion, GT 5

���
g
p

, the zero-energy noise function PS�t�
exhibits a crossover from the tunnel to diffusive regimes at
t � ���

g
p

=GT 4 1. Nevertheless, upon increase of O� the
function PS�t; t�� remains t�-independent down to much
smaller values of t� � GT=

���
g
p

5 1 which correspond to the
energy scales ln�od=O�� ' 2p

���
g
p

.

6. Conclusions

We developed the Proximity Action functional method able
to describe quantum charge transport in mesoscopic super-
conductive structures in the presence of interaction in the
normalmetal. Newmethod is applied to the study of the effect
of repulsion in the Cooper channel upon Andreev conduc-
tance and noise in 2D N-S structures. Interaction corrections
scale as gÿ1=2 ln�L=d� and lead to nonmonotonous depen-
dence of both the conductance and the Fano factor upon
temperature, voltage and magnetic field.
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