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Density of States below the Thouless Gap in a Mesoscopic SNS Junction
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Quasiclassical theory predicts an existence of a sharp energy gap Eg � h̄D�L2 in the excitation spec-
trum of a long diffusive superconductor–normal metal–superconductor (SNS) junction. We show that
mesoscopic fluctuations remove the sharp edge of the spectrum, leading to a nonzero density of states
(DOS) for all energies. Physically, this effect originates from the quasilocalized states in the normal
metal. Technically, we use an extension of Efetov’s supermatrix s model for mixed NS systems. A
nonzero DOS at energies E , Eg is provided by the instanton solution with broken supersymmetry.
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When a small piece of a normal �N� metal is placed in
contact with a superconductor �S�, paired electrons enter
the N region, changing its excitation spectrum. How dras-
tic are these changes? Recent studies [1–5] demonstrate
that the answer depends crucially on the type of dynamics
in the N region: In the case of integrable classical dynam-
ics, the density of states (DOS) of excitations is suppressed
at low energies and vanishes nearly linearly at the Fermi
level. Contrary, in N systems with chaotic dynamics, cou-
pling to a superconductor produces a gap in the DOS of
the order of h̄�tc, where tc is the typical time needed to
establish contact with the superconductor.

To illustrate this statement, consider a generic example
of a chaotic NS system: an SNS junction made of a dis-
ordered conductor of size L connected to the S terminals.
When the N metal is diffusive, with the mean free path
l ø L, and sufficiently long, with the Thouless energy
ETh � h̄D�L2 ø D (here D � yFl�3 is the diffusion
constant, and D is the superconductive gap in the termi-
nals), then tc is given by the diffusion time across the N
region, tc � h̄�ETh. Thus, the energy gap Eg � ETh de-
velops in the DOS [3,4].

However, all the results mentioned above are based ei-
ther on the quasiclassical theory of superconductivity and
proximity effect [6–8] or on the mean-field treatment of
the random-matrix theory (RMT). Although usually this
is a good approximation, it is interesting to check whether
some effects, which are beyond quasiclassics, may lead to
qualitative changes in the above picture.

In this Letter we show that, indeed, mesoscopic fluctu-
ations smear the hard gap in the quasiparticle spectrum of
dirty SNS junctions, producing a tail of the subgap states
with energies E , Eg. These low-lying states are due to
the existence of quasilocalized states [9,10] in the N part of
the junction which are weakly coupled to the S terminals,
thereby having a larger tc. The magnitude of this meso-
scopic effect is controlled by the dimensionless normal-
state conductance G � h�e2Rn of the junction, and is
small (except for the vicinity of Eg) at G ¿ 1. A related
problem was considered recently in Ref. [11], where a hy-
pothesis of universality and some nontrivial results from
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the RMT [12] were used to find an exponentially small
DOS below the mean-field gap in the N dot weakly con-
nected to a superconductor. We will show that their con-
jecture holds for sufficiently narrow junctions at E close
to Eg. Technically, our approach is completely different
from Ref. [11] as we employ the fully microscopic super-
matrix s-model method [13] for mixed NS systems [14].
We find a nontrivial instanton solution to the saddle-point
equations of the supermatrix s model responsible for the
nonzero DOS at energies E , Eg. The same instanton ap-
proach was used recently by Lamacraft and Simons [15]
for the study of subgap states in a superconductor with
magnetic impurities. Their instanton is pretty similar to
that of ours, leading to the same energy scaling for the
subgap DOS in the limit E ! Eg.

We consider an SNS junction with the N region being a
rectangular bar of size L 3 Ly 3 Lz , coupled to the S ter-
minals by the ideal contacts situated at x � 6L�2. We ne-
glect superconductivity suppression in the bulk terminals,
provided that they are sufficiently large, and assume zero
superconductive phase difference between them. The di-
mensionless conductance of the N region, G�L,Ly ,Lz� �
4pnDLyLz�L, where n is the normal-metal DOS per a
single projection of spin.

Our results can be summarized as follows. The behav-
ior of the subgap DOS �r�E�� depends on the relation
between Ly ,Lz, and the effective transverse length
L��E�, scaling as L��E ! Eg� � L�1 2 E�Eg�21�4

and L��E ø Eg� � L. In the vicinity of the qua-
siclassical gap, at E ! Eg, we find an intermedi-
ate asymptotic behavior ln�r�E�� � 2G�E� �1 2

E�Eg�3�2 ~ 2�1 2 E�Eg��62d��4, where G�E� �
G�L, min	Ly,L��E�
, min	Lz,L��E�
�, and d is the
effective transverse dimensionality of the junction: d � 0
for narrow junctions with Ly ,Lz ø L��E�, d � 1 for
wider junctions with Ly ¿ L��E� ¿ Lz , and d � 2
for films with Ly,Lz ¿ L��E�. In the low-energy limit,
E ø Eg, the behavior of the DOS is log normal in 0D:
ln�r�E�� � 2G ln2�Eg�E�, and is a power law in 1D:
ln�r�E�� ~ 2G ln�Eg�E�. These results are similar to
those for the distribution of relaxation times in 1D and 2D
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diffusive conductors [9], although with an important dif-
ference: the basic energy scale in our case is given by Eg,
whereas in Ref. [9] it was the level spacing d � 1�nV .

As a warm-up, we recall the standard quasiclas-
sical approach [3,4] to diffusive SNS junctions
based on the Usadel equation [8] for the quasiclas-
sical retarded Green function ĜR�r,E�. For the
latter we will assume the angular parametrization,
ĜR � tz cosu 1 tx sinu cosw 1 ty sinu sinw, where ti
are the Pauli matrices in the Nambu space. In the absence
of the phase difference between the S terminals, one can
set w � 0, and the Usadel equation acquires the form
(hereafter h̄ � 1):

D=2u 1 2iE sinu � 0, u�x � 6L�2� � p�2 .

(1)

The local density of states is given by rlocal�r,E� �
2n Re cosu�r�. The substitution u�x� � p�2 1 ic�x�
leads to the real equation for the function c�x� with
c�6L�2� � 0. It can be easily integrated yielding the
relation between E and the magnitude of c�x� at x � 0:s

E
ETh

�
Z c�0�

0

dcp
sinhc�0� 2 sinhc

. (2)

Equation (2) has real solutions for c�0� only for
E # Eg � cETh, with c � 3.12. At E . Eg, c�0�
becomes complex resulting in the square-root singu-
larity [3] in the DOS [here and below we provide
results for the DOS integrated over the whole N region,
�r�E�� �

R
dr �rlocal�r,E��]:

�r�E��quasicl. � 3.72d21
q
E�Eg 2 1 . (3)

Below the mean-field gap, at E , Eg, Eq. (2) has two
real solutions, c1�0� and c2�0� . c1�0�, merging at E �
Eg. They determine the corresponding solutions u1,2�x� �
p�2 1 ic1,2�x� to Eq. (1). Having real c�x�, both of them
do not contribute to the DOS at E , Eg. Usually the
solution c1�x� is chosen by the continuity argument, as
it obeys the natural condition limE!0c1�x,E� � 0, while
c2�x,E� diverges in the limit of vanishing E. We will see
however that it is this second solution which is responsible
for the finite DOS below the quasiclassical gap.

In order to extend the quasiclassical solution and take
into account mesoscopic fluctuations, we will use the non-
linear supermatrix s model similar to that derived in [14].
The starting point is representation of ĜR in terms of the
functional integral:

ĜR�r,r0 ,E� � 2i
Z

fF�r�f1
F �r0�e2S�f�Df�Df ,

S�f� �
Z
dr f1�r� �E 1 i0 2 Ĥ �f�r� .

(4)

In this expression f is the 4-component superfield con-
sisting of commuting (complex; fB) and anticommuting
(Grassmann; fF) parts. The Hamiltonian Ĥ is a matrix
in the Nambu-Gor’kov �N� space:
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Ĥ � tz

∑
p̂2

2m
2 EF 1 U�r�

∏
1 D�r�tx , (5)

where D�r� � Du�jxj 2 L�2�, and U�r� is the random
potential. In the absence of magnetic field, one has
to double the field space in order to account for the
time-reversal symmetry, introducing the “time-reversal”
(TR) space according to F � �f, ityf��T�

p
2. This

definition coincides with the one used in [16]; it differs
from the notations of [13,14] by the factor ity in the
f� sector. Pauli matrices operating in the TR space are
denoted by si.

After this definition the derivation of the s model
is straightforward [13,14,16]. One has to carry out
(i) averaging over the random potential with the cor-
relator �U�r�U�r0�� � d�r 2 r0��2pnt; (ii) Hubbard-
Stratonovich transformation introducing an 8 3 8
matrix Q acting in the product of FB (Fermi-Bose), N,
and TR spaces; (iii) expansion to the leading terms in =Q,
E, and D. The result is

�rlocal�r,E�� �
n

4
Re

Z
DQ str	kLQ�r�
e2S�Q�, (6)

S�Q� �
pn

8

Z
dr str�D�=Q�2 1 4iQ�itxD 1 LE�� .

(7)

Here L � sztz , the matrix Q � U21LU with the
proper set [14] of matrices U is subject to the condition
Q � CQTCT , where C � 2txsz��1 1 k�sx 1 �1 2
k�isy��2, and k � diag�1, 21�FB. The manifold of Q
matrices is parametrized by eight ordinary and eight
Grassmann variables.

The next step is to find the saddle-point solutions to the
action (7). We start from the simplest case when Q does
not contain Grassmann variables. Among eight commut-
ing variables entering Q, only four are nonzero at the sad-
dle points. Below we retain only these four variables in
the parametrization of the Q matrix, which then splits into
the Fermi-Fermi (FF) and Bose-Bose (BB) sectors:

QFF � sztz cosuF 1 tx sinuF , (8a)

QBB � �sz coskB 1 tz sinkB�sx cosxB 1 sy sinxB��

3 �tz cosuB 1 sztx sinuB� . (8b)

The variables uF,B coincide (at the supersymmetric saddle
point) with the standard Usadel angle u.

Minimization of the action for a uniform superconductor
at E ø D gives QS � tx , i.e., uF,B � p�2 and kB �
0, that provides the boundary conditions for Q in the N
region. In the absence of the phase difference between
the S terminals, the angle xB � const at the saddle point
in the N part of the structure. Introducing new variables
aB � uB 1 kB and bB � uB 2 kB in the BB sector, one
obtains for the saddle-point action

S�uF, aB, bB� � 2S0�uF� 2 S0�aB� 2 S0�bB� , (9)
027002-2
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S0�u� �
pn

4

Z
dr �D�=u�2 1 4iE cosu� . (10)

Varying with respect to u, one recovers Eq. (1) as the
saddle-point equation for the action (10).

The Usadel equation (1) possesses, apart from the x-
dependent solutions discussed above, solutions which de-
pend on the transverse � y, z� coordinates. The role of
the transverse dimensions will be discussed later, while
now we will consider the 0D case, relevant for suffi-
ciently narrow junctions with Lx ,Ly ø L��E�. Then, ac-
cording to the previous analysis, the Usadel equation has
two solutions, u1�x� and u2�x�. Therefore, the full ac-
tion (9) has in total eight different saddle-point solutions:
�uF, aB,bB� � �ui , uj , uk�, with i, j, k � 1, 2, that will
be referred to as �i, j, k�. However, only four of them with
uF � u1 can be reached by a proper deformation of the
integration contour.

The simplest is the supersymmetric saddle point (1,1,1).
In this case, Gaussian integrations over commuting and
anticommuting variables near it cancel each other, and the
contribution to �r�E�� reduces to the form (3) with the
vanishing DOS below Eg. Thus, the saddle-point approxi-
mation for the s model (7) restricted to the supersym-
metric saddle point is equivalent [14] to the quasiclassical
treatment based on the Usadel equation (1).

To get a nonzero DOS below Eg it is necessary to
take saddle points with broken supersymmetry into ac-
count. [Note that the global supersymmetry of the ac-
tion is preserved by the Grassmann zero mode; cf. the
term zj in Eq. (11).] Such a solution with the lowest ac-
tion is (1,1,2) [actually, a whole degenerate family of the
saddle points, and, in particular, (1,2,1), can be obtained
from it by rotation on the angle xB [ �0, 2p�]. The key
point is that Gaussian fluctuations near this saddle point
have a negative eigenvalue which leads to an additional
imaginary unity in the preexponent and, consequently, to
the nonzero DOS. This contribution is suppressed by the
factor e2DS , where DS � S0�u1� 2 S0�u2� . 0. Finally,
the saddle point (1,2,2) has the action 2DS and its con-
tribution can be disregarded at DS ¿ 1. Thus, the sub-
gap DOS can be estimated with exponential accuracy as
� r�E�� � d21e2DS�E�. Below we will calculate �r�E�� in
the limiting cases E ! Eg and E ø Eg.

Now we turn to actual calculations at energies E close to
Eg. It is possible to find the one-instanton contribution to
the DOS in the energy rangeG22�3 ø 1 2 E�Eg ø 1 in-
cluding the preexponential factor. An important observa-
tion to be used below is that the solutions u1�x� and u2�x�
merge at Eg. Let us start with the supersymmetric saddle
point (1,1,1) and look at fluctuations around it. Almost
all of them are hard (with a mass of the order of Eg or
larger) and can be neglected. There are only eight (cor-
responding to four commuting and four anticommuting
variables) soft modes whose mass vanishes at E � Eg.
Half of them transform the saddle point (1,1,1) to the
instanton (1,2,1), and the other half transform it to the
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instanton (1,2,2). Below we will consider the case when
DS ¿ 1 that allows one to disregard the contribution of
the instanton (1,2,2) and to take Gaussian integrals over
the corresponding soft fluctuations. As a result, in order
to calculate the DOS in this limit it is sufficient to retain
only two commuting (q and xB) and two Grassmann (z
and j) variables parametrizing the relevant soft degrees of
freedom in the matrix Q � e2Wc�2e2Wa�2LeW

a�2eW
c�2.

Here the matrix Wa contains anticommuting vari-
ables: Wa

FB � �if0�x��4� ��z 1 j��ity 1 tzsx� 1 �z 2

j� �itysz 1 tzisy��, Wa
BF � txsx�Wa

FB�Ttxisy , while
in the absence of Wa , Q reduces to the form (8) with uF �
bB � u1�x�, aB � u1�x� 1 iqf0�x�. The function f0�x�
is the normalized difference dc�x� � c2�x� 2 c1�x�
at Eg: f0�x� � limE!Eg

dc�x��kdc�x�k, where

jjF�x�jj2 � �1�L�
RL�2

2L�2 F
2�x� dx. Evaluating the action,

integrating over the cyclic angle xB, and performing the
x integration, one obtains

S � G̃

∑
p

˜́ q2 2
q3

3
1 zj�2

p
˜́ 2 q�

∏
, (11)

G̃ �
pc2Eg

2d
�

cc2

8
G, ˜́ �

2c1

c2
´ ,

´ �
Eg 2 E

Eg
, (12)

where cn �
RL�2

2L�2 coshc0�x�f2n21
0 �x� dx�L, and c0�x� �

c1,2�x,Eg�; c1 � 1.15, and c2 � 0.88. The action (11)
has two saddle points: q � 0 and q � 2

p
˜́ which cor-

respond to the instantons (1,1,1) and (1,2,1), respectively.
The invariant measure near the instanton (1,2,1) is given
by DQ � 4

p
˜́ dqdzdj. Substituting

R
str�kLQ� dV �

2ic1V �4
p

˜́ 2q� into Eq. (6) and integrating by the saddle-
point method near q � 2

p
˜́ we arrive at the one-instanton

contribution to the DOS:

�r�E ! Eg��0D �
c1

d

r
p

8G̃
p

˜́
exp

µ
2

4
3
G̃ ˜́ 3�2

∂
,

(13)

where tilded quantities are defined in Eq. (12). This result
is valid provided that ´ ¿ G22�3 when the contribution of
the instanton (1,2,2) can be neglected.

The 0D result (13) can be generalized for a normal dot of
an arbitrary shape coupled to a superconductor (cf. [1,11]),
provided that the numbers c, cn are defined with the use
of the exact solutions u1,2�r� of the Usadel equation in a
given geometry: cn � �1�V �

R
coshc0�r�f2n21

0 �r�dr. It
is worth mentioning that the energy scaling of the result
(13) coincides with the RMT conjecture of Ref. [11] by
Vavilov et al., who considered a quantum dot connected to
a superconducting terminal through a perfectly transparent
(G � 1� interface. The fact that a similar result is obtained
for a system with very different, diffusive, dynamics is an
indication that the energy scaling of the DOS tail always
has the RMT form once the mean-field DOS has a well-
defined square-root edge �r�E�� �

p
E 2 Eg, regardless
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of the geometry and type of dynamics of the normal part of
the system. The RMT conjecture of Ref. [11] was proved
in a very recent preprint [17]. The limit of an opaque (G ø
1� NS interface can be treated by the present approach,
provided that the action (7) is supplied with the appropriate
boundary term [13].

Turning to the limit of small energies, E ø Eg,
one obtains c1�x� � 0 and c2�x� � A�1 2 2jxj�L�,
where, according to Eq. (2), A � ln�Eg�E� (cf. Ref. [9]).
Thus, the action of the instanton (1,1,2) becomes
DS�E� � 2S0�u2� � pEThA2�d, and the result for the
DOS reads

�r�E ø Eg��0D �
1
d

exp

µ
2
G
4

ln2Eg

E

∂
. (14)

Equation (14) is derived in the range d ø E ø Eg. It
may not be applicable at the scale of the level spacing,
E � d, where the contribution of the soft fluctuations of
the symmetry class CI [14] may become important.

Now let us consider the role of the saddle-point solutions
which depend on the transverse coordinates y, z. At E !

Eg, one has to retain only soft modes associated with the
instanton (1,1,2). As a result, the action (11) acquires a
gradient term:

S � G̃
Z dy

L
dz
L

µ
L2

2cc2
�=�q�2 1

p
˜́ q2 2

q3

3

∂
,

(15)

where the Grassmann variables are discarded as we are
not interested in the preexponent. Comparing the first and
the second term in Eq. (15), one extracts the characteristic
transverse scale L��E� � L�cc2�2�21�2 ˜́21�4 � L´21�4,
which determines the effective dimensionality of the sys-
tem. If Ly or Lz is shorter than L��E�, then it costs
too much energy to have gradients in that direction, and
the corresponding dimension “freezes out.” The 0D case
considered above referred to the limit Ly,Lz ø L��E�.
Otherwise, an instanton will appear in the transverse di-
rection to minimize the total action. In the 1D case [Ly ¿

L��E� ¿ Lz], the action (15) achieves its stationary point
at q� y� � 3

p
˜́ cosh22� y�L��, leading to

�r�E ! Eg��1D �
1
d

exp

µ
2

12p

5

p
2cc2 nDLz ˜́ 5�4

∂
.

(16)

Analogously, in the 2D case [Ly ,Lz ¿ L��E�], the quasi-
particle DOS tail has the form

�r�E ! Eg��2D � d21 exp�248.7nDL ˜́ � . (17)

The length L��E� diverges at Eg, indicating that any junc-
tion becomes effectively 0D close to the quasiclassical gap.
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However, different parts of the DOS tail may exhibit dif-
ferent exponents, from 1 to 3/2.

The value of L��E� is getting shorter as E decreases,
and becomes of the order of L at E ø Eg. Then the
solution of the 1D problem can be found following Ref. [9]
where similar calculations were done in the problem of
prelocalized states in a 2D disordered metal. The function
c2�x, y� has a sharp peak at the center of the instanton
and with the logarithmic accuracy is given by c2�x,y� �
24 ln�2

p
x2 1 y2�L�. The result for the DOS then reads

�r�E ø Eg��1D � d21�E�Eg�4p2nDLz . (18)

To conclude, we have shown that mesoscopic fluctua-
tions smear the quasiclassical gap in the DOS of a diffu-
sive SNS junction. The tail of the DOS is due to the states
anomalously localized in the N part of the junction and
weakly coupled to the S terminals.
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