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A numerical study of Anderson transition on random regular graphs (RRGs) with diagonal disorder is
performed. The problem can be described as a tight-binding model on a lattice with N sites that is locally
a tree with constant connectivity. In a certain sense, the RRG ensemble can be seen as an infinite-dimensional
(d → ∞) cousin of the Anderson model in d dimensions. We focus on the delocalized side of the transition and
stress the importance of finite-size effects. We show that the data can be interpreted in terms of the finite-size
crossover from a small (N � Nc) to a large (N � Nc) system, where Nc is the correlation volume diverging
exponentially at the transition. A distinct feature of this crossover is a nonmonotonicity of the spectral and
wave-function statistics, which is related to properties of the critical phase in the studied model and renders the
finite-size analysis highly nontrivial. Our results support an analytical prediction that states in the delocalized
phase (and at N � Nc) are ergodic in the sense that their inverse participation ratio scales as 1/N .
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Introduction. Anderson localization [1] is a fundamental
quantum phenomenon that remains a focus of current re-
search. A disordered quantum system can be driven (e.g.,
by increasing disorder) through Anderson transition (AT)
between a delocalized and a localized phase [2]. For some
class of models (defined on the Bethe lattice, a tree with
constant connectivity) the AT problem allows for an exact
solution, making it possible to establish the transition point and
the critical behavior [3–8]. Recently, Anderson localization
on treelike graphs has attracted much attention in view of
its connections with problems of many-body localization in
quantum dots [9–24] and in extended systems with localized
single-particle states [25–53].

These developments motivated Biroli et al. [54] to explore
numerically the Anderson localization on a random regular
graph (RRG)—a treelike graph without boundary. Since the
critical disorder strength Wc does not depend on boundary
conditions, the RRG model undergoes the AT at the same
point where the corresponding Bethe-lattice model does. For
the model considered in Ref. [54] (connectivity three, hopping
set to unity, box distribution of disorder), the transition point
was found to be Wc � 17.5 [3,55,56]. The authors of Ref. [54]
considered the scaling of the level statistics and wave-function
statistics [the inverse participation ratio (IPR) P2 = ∑

i |ψi |4,
with ψi being the wave-function amplitude on site i] with
the system size. For conventional disordered systems (in
d < ∞ dimensions), these quantities have three distinct types
of behavior at the localized, critical, and delocalized fixed
points [2,57] and have been thus efficiently used to locate the
AT [58–64]. It was observed in Ref. [54] that the data for
matrix sizes N between 512 and 8192 suggest a crossing point
at W∗ � 14.5. This was interpreted as a possible indication of
the intermediate “nonergodic delocalized” phase between WT

and Wc, with Poisson level statistics and with the IPR that does
not scale as 1/N .

Subsequently, the problem of Anderson localization at RRG
graphs was considered numerically by De Luca et al. [65].

These authors focused on the eigenfunction statistics and ob-
served crossing points in singularity spectrum f (α) extracted
in a certain way from the distribution of wave-function ampli-
tudes for systems with N in the range from 2000 to 16 000.
On this basis, they conjectured that eigenstates are multifractal
(and thus nonergodic) in the whole delocalized phase, i.e., for
all 0 < W < Wc. This would imply, in particular, that the IPR
scales in the large-N limit as P2 ∝ N−μ with the exponent
μ(W ) satisfying μ(W ) < 1 for all W < Wc.

The possibility of a multifractal delocalized phase in a
disordered system is clearly very intriguing. However, the
numerical observations of Refs. [54,65] appear to be in
conflict with the analytical predictions of Ref. [66] where
the sparse random matrix (SRM) ensemble was introduced
and studied analytically. It was found that in the delocalized
phase and in the limit of large number of sites N (i) the
level statistics takes the Wigner-Dyson (WD) form, and (ii)
the IPR for infinite-cluster eigenfunctions scales with N

as P2 � C/N . Here the prefactor C(W ) depends on the
disorder strength W , approaching its Gaussian-ensemble value
3 deeply in the metallic phase (W → 0) and diverging as
ln C ∝ (Wc − W )−1/2 at the localization transition (W = Wc).
Numerical results of Refs. [67,68] for the model on RRG
supported the transition from the Poisson to the WD statistics
at the AT.

This has motivated us to perform a detailed analysis of the
finite-size scaling of energy-level and wave-function statistics
in the Anderson model on RRG, which is the subject of this
Rapid Communication. We have analyzed systems of sizes
N from 512 to 65 536 (for W = 11 up to 262 144), with
the largest N exceeding those in Refs. [54,65]. One of our
key observations is a pronounced nonmonotonous behavior
of observables as functions of N on the delocalized side of
the AT. This nonmonotonicity, which has a profound origin
in the nature of the AT fixed point for treelike structures
(or, equivalently, in the limit d → ∞), makes the finite-size
analysis highly nontrivial. Our key conclusion is that the
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numerical results are fully consistent with the analytical
predictions of ergodicity of the delocalized phase (as defined
by the WD level statistics and the 1/N scaling of IPR in
the large-N limit). We expect that our analysis has important
implications also for other related problems of Anderson
localization, in particular, in the many-body setting.

Model. We study noninteracting spinless particles hopping
over a RRG with connectivity three in a potential disorder
described by the Hamiltonian

H = −
∑

〈i,j〉
(c†i cj + c

†
j ci) +

N∑

i=1

εic
†
i ci , (1)

where the sum is over nearest-neighbor sites of the RRG. The
energies εi are independent random variables sampled from a
uniform distribution on [−W/2,W/2]. Locally looking like a
tree, the graph possesses large loops with the typical length of
the order of log2 N [69]. This quantity will be referred to as
the system size, with the total number of sites N playing the
role of volume. We study the middle of the spectrum (�1/8
of eigenstates around E = 0) by exact diagonalization of the
Hamiltonian (1) and average quantities of interest over disorder
realizations (typically over 106 to 5 × 104 wave functions for
N from 512 to 262 144, respectively). In what follows, we
concentrate on (i) level spacings of neighboring eigenvalues
δn = En+1 − En, and (ii) wave-function amplitudes |ψ (n)

i |2.
As the RRG model differs from that on the Bethe lattice [3]
only by the presence of very large loops, the transition point
Wc (defined in the thermodynamic limit N → ∞) is the same
in both models, Wc � 17.5.

Level statistics. As disorder W passes the transition
point, the statistics of the eigenvalues of the Hamiltonian H
qualitatively changes. This transition in the level statistics,
which becomes a crossover for a finite system size, has
been studied in detail in finite-d models [59–63]. Following
Refs. [29,54], we use as a convenient scaling variable the
ensemble-averaged ratio r = 〈rn〉 of two consecutive spacings,
rn = min(δn,δn+1)/ max(δn,δn+1), which takes values between
rP = 0.386 and rWD = 0.530 realized for the Poisson and the
WD Gaussian orthogonal ensemble (GOE) limits, respectively.

Our results for dependence of r on W for various N are
shown in Fig. 1. As expected, we observe a crossover from
the GOE to the Poisson value that takes place for each N with
increasing W . While the crossover becomes sharper for larger
N , it remains rather broad. This is an indication of the fact
that the critical regime [the range of disorder W for which
the system size log2 N is larger than or of the order of the
correlation length ξ (W )] still remains quite broad even for
N = 65 536.

At first glance, the curves in Fig. 1 may seem to show a
crossing point somewhere near W = 15, which is similar to the
observation in Ref. [54]. However, a closer inspection reveals
that this apparent crossing point gradually shifts towards larger
values of W with increasing N . Specifically, with N increasing
from 512 to 65 536, the crossing point moves from W∗ � 14
to W∗ � 16. This implies that the value of r at the “moving
crossing point” gradually shifts downwards, i.e., towards the
Poisson value. This shift has a fundamental reason related to
the character of the AT critical point on treelike structures, as
we are going to explain.

FIG. 1. Mean adjacent gap ratio r as a function of disorder W

at various N (see legend). Inset: apparent crossing point W∗ as a
function of the system size, ln N .

Let us first remind the reader about a character of the AT
fixed point in d-dimensional systems [2,60,70,71]. In d =
2 + ε dimensions (i.e., close to the lower critical dimension
d = 2), the critical point corresponds to weak disorder (or,
equivalently, weak coupling, in terms of the effective field the-
ory, the nonlinear sigma model), which means that the critical
level statistics is close to the WD one and the multifractality
is weak. With increasing d the critical point moves towards
strong disorder (strong coupling), so that the level statistics
approaches the Poisson form and the multifractality takes its
strongest possible form in the limit d → ∞. The latter limit
corresponds to treelike models. One of the manifestations of
this extreme form of the AT criticality on treelike structures
is the fact that the IPR has a finite limit when the system
approaches the critical point from the localized phase [4–8]
(and thus, by continuity, is also finite at criticality).

Thus, the critical levels statistics in the RRG model is of
Poisson form, like in the localized phase. Therefore, contrary
to models in finite dimensionality d, there should be no
intermediate crossing point for curves r(W ) corresponding to
different N : the crossing point should necessarily drift towards
the Poisson limit with increasing N . This is exactly what we
observe in Fig. 1.

An alternative way to plot the same data is shown in
Fig. 2. Here we show a set of curves r(N ) corresponding to
different W . The most remarkable feature is a nonmonotonous
dependence r(N ) for curves with moderate disorder on the
delocalized side of the transition. The reason for this behavior
follows immediately from the above explanation of the shift
of the crossing point. Exactly at critical disorder, W = Wc, the
system develops towards the critical point with increasing N ,
which implies that r decreases, asymptotically approaching
its lowest (Poisson) value rP. When the system is on the
delocalized side (W < Wc) but not too far from the transition,
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FIG. 2. Mean adjacent gap ratio r as a function of system size,
ln N , at various disorder levels W .

it behaves as a critical system as long as its linear size log2 N is
smaller than the correlation length ξ (W ) (diverging in a power-
law fashion at Wc). Thus, for N smaller than the correlation
volume Nc(W ) ∼ 2ξ (W ), observables develop as at criticality;
in particular, r decreases, approaching rP. When N reaches
Nc(W ), the system “recognizes” that it is in the delocalized
phase, and r starts increasing towards its large-N limit rWD.

Eigenfunction statistics. Analyzing fluctuations of eigen-
functions, we focus on the (ensemble-averaged) IPR
P2(W,N ) = 〈∑N

i=1 ψ4
i 〉. The system-size dependencies of

NP2(W,N ) for various strengths of disorder are shown in
Fig. 3. In the localized phase this product increases linearly at
large N , which is the behavior that the data for W = 25 clearly
show. We consider now the remaining data sets that belong to

FIG. 3. ln NP2 as a function of the system size at various disorder
levels. Dots: simulation; lines: smooth interpolation.

the delocalized side (W < Wc � 17.5). In the conventional
situation expected in the delocalized phase (“ergodicity”),
the product NP2(W,N ) saturates at N � 1 at a value C(W )
which increases with W approaching Wc. This is indeed the
behavior that is clearly observed in Fig. 3 when the system is
not too close to the transition, W � 11. At stronger disorder,
11 � W < 17.5, the saturation is not reached for available
system sizes. The reason is clear from the above discussion
of the level statistics: the saturation is expected only if
log2 N significantly exceeds the correlation length ξ (W )—the
condition that ceases to be fulfilled even for our largest N

when the disorder W comes sufficiently close to Wc.
It is instructive to replot the data of Fig. 3 by

introducing the “flowing fractal exponent” μ(W,N ) =
−∂ ln P2(W,N )/∂ ln N . The evolution of μ(W,N ) with the
system size for various W is shown in Fig. 4(a). In this form, the
data show a behavior very much analogous to that observed for
the level statistics in Fig. 2. For moderate disorder, W � 11, the
exponent μ clearly approaches its ergodic value unity (which
corresponds to the saturation in Fig. 3). For stronger disorder
[see Fig. 4(b)], 11 � W < 17.5, we observe a nonmonotonous
behavior, the reason for which is exactly the same as has been
explained above in connection with Fig. 3. Specifically, μ

first flows towards its value μc = 0 at the AT critical point.
(As pointed out above, this critical point is characterized by
a finite value of IPR, as in the localized phase, thus μc = 0.)
When the size log2 N exceeds the correlation length ξ (W ) [see
inset in Fig. 4(b)], the flow turns towards the delocalized fixed
point with μ = 1.

To estimate the critical index νd of the correlation length
in the delocalized phase, ξ (W )∝ (Wc − W )−νd , we plot in
Fig. 4(c) the data of insets of Figs. 1 and 4(b) versus Wc − W on
the logarithmic scale. While the data are not sufficient for an ac-
curate determination of νd , they are consistent with νd = 1/2,
the value suggested by the critical behavior of the IPR [66].

Summary and discussion. In this Rapid Communication, we
have studied numerically the level and wave-function statistics
around the localization transition on RRG (representing a
treelike structure without a boundary), for system sizes N

between 512 and 262 144. We have used the mean value
of the ratio of two consecutive level spacings r and the
ensemble-averaged IPR P2 (and its logarithmic derivative
μ yielding the “flowing fractal exponent”) to characterize
these statistics and evaluated their dependencies on N and
disorder W . Our main focus was on the behavior on the
delocalized side of the transition, W < Wc � 17.5. We have
found that for moderate disorder W � 11 our largest system
sizes are sufficient to clearly see that the observables reach their
conventional (“ergodic”) behavior in the delocalized phase:
WD statistics of energy levels and 1/N scaling of the IPR.
For stronger disorder, 11 � W < Wc, even our largest system
sizes are insufficient to reach the asymptotic large-N behavior.
However, we observe in this range of disorder a striking
nonmonotonous N dependence of observables that strongly
supports analytical expectations of “ergodic” behavior at large
N in the whole delocalized phase. Specifically, the observables
first flow with increasing N towards their critical (AT) values
which are of the same character as in the localized phase (rc =
rP and μc = 0). The flow changes its direction when N reaches
a value Nc(W ) = 2ξ (W ) that can be interpreted as a “correlation
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(c)(b)

(a)

FIG. 4. (a) Fractal exponent μ as a function of the system size at various disorder levels. (b) Zoom-in for selected disorders W = 13–17).
Inset: position of the minimum of μ(N ) as a function of disorder. (c) Critical behavior of the correlation length ξ (W ) at W < Wc as
extracted from the position of the crossing point N∗ of r(W ) curves (red) and minima Nmin in μ(N ) (blue). The dashed line corresponds to
ξ (W ) ∝ (Wc − W )−1/2.

volume”: for larger N the observables flow towards their
standard values in the delocalized phase, rWD and μ = 1. Our
results thus corroborate the analytical predictions of Ref. [66]
on the WD level statistics and 1/N scaling of IPR [at N �
Nc(W )] in the whole delocalized phase on treelike structures.

Before closing, we make several comments on connections
with other works, on further implications of our Rapid Com-
munication, and on prospective directions for future research.

(i) The fact that extremely large values of N are required
to reasonably reach the large-N asymptotics for disorder
strengths that are not too close to the critical one (10%–20%
below Wc, i.e., W = 14–16) is due to a combination of two
reasons. First, the condition for the asymptotic behavior is that
the linear size log2 N exceeds the correlation length ξ (W ),
which requires an exponentially large N . Second, even when
this condition starts to be fulfilled and the flow—which is
initially towards the AT point—turns towards the delocalized
fixed point, there is still quite a long way for it, in view
of the “quasilocalized” character of the AT fixed point on
treelike structures. This relatively large critical window of W

at realistic N and the peculiar nonmonotonous flow explain
the difficulty of the numerical analysis of the problem and
a controversy in the recent literature [54,65]. Taking data
for r and μ in a limited range of N may mislead one to a
conclusion that the system is “nonergodic” in a certain part of
the delocalized phase.

(ii) For a treelike model, there is a very essential difference
between the system without boundary (like RRG studied in this
Rapid Communication) and a finite piece of tree (with the ma-
jority of sites located at the boundary). In the latter case delo-
calized states indeed show a (multi-)fractral behavior [72,73].

(iii) Recently, we learned about an analysis [74] of the
localization transition in the ensemble of Lévy matrices
(LM)—random matrices with entries distributed according to
an identical heavy-tailed distribution. While the two problems
are quite different, there is a remarkable similarity in the
behavior of eigenvalue and eigenfunction statistics near the
AT on treelike structures (RRG) and in the LM ensemble.

(iv) Recently, an approach related to that in Ref. [66]
was used to calculate finite-N correction to the density of

states of the RRG ensemble [75]. Also, Ref. [76] studied
the large energy-level statistics. A challenging prospective for
future work is to study analytically the critical-to-delocalized
crossover (with increasing N ) in the level and eigenfunction
statistics for disorder W near Wc.

(v) We expect that some of our results may be relevant also
to many-body localization transitions in quantum dots [11–24]
and in extended systems [26–53]. Indeed, corresponding
numerical studies do reveal [29,34] the drift of the crossing
point in the level statistics towards its Poisson limit. As our
work demonstrates, such peculiarities make the finite-size
scaling analysis a highly challenging task.

Extrapolating results of our Fig. 4(c) to L ≡ log2 N = 100,
we get the uncertainty (Wc − W )/Wc within 1%, suggesting
that many-body systems with �100 spins (atoms,...) may
be sufficient for reaching the transition with high accuracy.
Indeed, recent experiment [53] on a system of L � 100 atoms
determined quite accurately the position of the many-body
localization transition.

(vi) Recent years have witnessed impressive progress in
mathematical investigations of SRM (Erdös-Rényi) and RRG
ensembles [77]. One thus may hope that analytical results of
Ref. [66] may be cast in a mathematically rigorous form in the
near future.

Note added. Recently, two related papers appeared. First,
Altshuler et al. [78] used a numerical approach very similar to
ours for the analysis of the “flowing fractal exponent” and
reproduced our results on the ergodicity of eigenstates on
RRG for disorder strength W < 10, thus accepting that the
claim of Ref. [65] about fractality for all W was erroneous.
While they still interpret numerical results for W > 10 as
an evidence of eigenstate fractality, we believe that this is
again a misinterpretation (analogous to the one made in
Ref. [65] also for smaller W related to system sizes being not
sufficiently large in comparison with the correlation length.
The authors of Ref. [78] also present some arguments in favor
of fractality of delocalized states on RRG based on a numerical
implementation of a certain iterative procedure. This argument
is inappropriate since it is based on an assumption that loops
do not play any important role on RRG. As was shown
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recently by two of us [73] this assumption is not correct: the
wave function statistics on a finite Bethe lattice is essentially
different from that on RRG. Second, Garica-Mata et al. [79]
performed a numerical scaling analysis of the eigenfunction
statistics on RRG of extremely large sizes N (up to 2 × 106).
Their findings fully confirm our conclusions: the ergodicity
(in the large-system limit) of the delocalized phase on RRG
and the value of the corresponding correlation-length exponent
νd = 1

2 .
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[32] M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. Lett. 110,

260601 (2013); Phys. Rev. B 90, 174302 (2014).
[33] S. Gopalakrishnan and R. Nandkishore, Phys. Rev. B 90, 224203

(2014).
[34] D. J. Luitz, N. Laflorencie, and F. Alet, Phys. Rev. B 91,

081103(R) (2015).
[35] R. Nandkishore and D. A. Huse, Annu. Rev. Condens. Matter

Phys. 6, 15 (2015).
[36] C. Karrasch and J. E. Moore, Phys. Rev. B 92, 115108 (2015).
[37] Y. Bar Lev, G. Cohen, and D. R. Reichman, Phys. Rev. Lett.

114, 100601 (2015).
[38] K. Agarwal, S. Gopalakrishnan, M. Knap, M. Müller, and E.

Demler, Phys. Rev. Lett. 114, 160401 (2015).
[39] S. Gopalakrishnan, M. Müller, V. Khemani, M. Knap, E. Demler,

and D. A. Huse, Phys. Rev. B 92, 104202 (2015).
[40] Y. Bar Lev and D. R. Reichman, Europhys. Lett. 113, 46001

(2016).
[41] V. K. Varma, A. Lerose, F. Pietracaprina, J. Goold, and A.

Scardicchio, arXiv:1511.09144.
[42] M. V. Feigel’man, L. B. Ioffe, and M. Mézard, Phys. Rev. B
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