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Gapful electrons in a vortex core in granular superconductors
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Abstract

We calculate the quasiparticle density of states (DoS) inside the vortex core in a granular
superconductor, generalizing the classical solution applicable for dirty superconductors.
A discrete version of the Usadel equation for a vortex is derived and solved numeri-
cally for a broad range of parameters. Electron DoS is found to be gapful when the
coherence length ξ becomes comparable to the distance between neighboring grains l.
Minigap magnitude Eg grows from zero at ξ ≈ 1.4l to third of superconducting gap ∆0
at ξ ≈ 0.5l. The absence of low-energy excitations is the main ingredient needed to
understand strong suppression of microwave dissipation recently observed in a mixed
state of granular Al.
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1 Introduction

Electron-hole quasiparticle states inside the core of an Abrikosov vortex in a clean supercon-
ductor form an equidistant set of Caroli–de Gennes–Matricon (CdGM) energy levels with a tiny
spacingω0 ∼∆/kFξ [1]. Since the product of the Fermi wave vector kF and coherence length
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ξ is typically very large for all usual superconductors, the level spacing ω0 turns out to be
much smaller than the bulk gap ∆, indicating that the spectrum can be considered as nearly
continuous. Potential disorder reshuffles CdGM levels, while keeping their average density
intact; the corresponding detailed solution was found long ago in Ref. [2]. The presence of
quasiparticle excitations in the vortex core characterized by a finite DoS at the Fermi energy
has important implications regarding dissipation in a mixed state of type-II superconductors at
low temperatures. Motion of vortices driven by a dc transport supercurrent leads to parametric
modulation of the CdGM states and their excitation from the lower to higher energy levels,
with a subsequent inelastic relaxation [3]. Due to gapless nature of localized CdGM states,
energy dissipation occurs at any small vortex velocity and thus leads to Ohmic conductivity
in the flux-flow state [4]. The same mechanism is responsible for enhancement of microwave
losses in the mixed state at low frequencies, ω≪∆/ħh.

The above classical picture was questioned recently due to unexpected experimental results
for ac dissipation at low vortex density in disordered Aluminum films [5]. It was found that
while less disordered films followed the standard expectations, ac dissipation for the most
disordered film was suppressed nearly by a factor of 40. It is difficult to explain this effect
other than assuming the absence of the low-energy CdGM states in the most disordered Al film.
It is not the first example of somewhat anomalous nature of electron states in a vortex core:
The absence of CdGM states was reported by STM study in a copper-oxide high-temperature
superconductor [6]. Besides that, numerical evidence for anomalous structure of energy levels
of the vortex in a very strongly disordered superconductor was provided in Ref. [7]. No clear
physical picture explaining these anomalies was proposed, as far as we are aware of. In the
present paper we demonstrate one of possible mechanisms leading to absence of low-energy
excitations inside a vortex core related to a granular nature of the superconducting material.

In a granular material, metallic grains are separated by tunnel barriers. The difference
between diffusive and tunnel transport in mesoscopic electronic structures was discussed in
details in Refs. [8]. It was shown, in particular, that the properties of a structure made of a piece
of diffusive metal (resistance RD) connected in series with a tunnel junction (resistance RT )
depends on the ratio of resistances, RT/RD. Perfectly conducting channels with transparencies
Tn → 1 exist as long as RT < RD and disappear in the opposite limit. On the other hand, it
is exactly the presence of “arbitrary transparent” channels in a diffusive metal described by
Dorokhov’s distribution P(T ) [9] that leads to the absence of a minigap in an SNS junction
with the phase difference ϕ = π between superconducting terminals. The last statement
can be illustrated by Beenakker’s formula [10] for energy levels inside a short SNS junction:
En =∆[1−Tn sin2(ϕ/2)]1/2. A junction of an SINS type with a highly resistive tunnel barrier
does not support conducting channels with Tn ≈ 1 and the gap in the excitation spectrum
never closes.

The physics of SNS junctions at phase differenceπ is similar in many respects to the physics
of vortices, since electrons in both systems on average feel a zero order parameter [11]. It is
therefore natural to expect that the quasiparticle spectrum inside a vortex in a superconductor
composed of small grains connected by tunnel junctions between them may be qualitatively
different from the CdGM gapless spectrum. An analogous effect is well known in the case
of large superconducting islands with a well-defined intrinsic superconductivity coupled by
weak Josephson junctions. Magnetic field penetrates such a structure in the form of core-less
Josephson vortices localized near the junctions, these vortices do not host any low-energy
excitations.

The situation with granular Al consisting of very small grains with the size of l ≈ 3 − 4
nm [12] is somewhat intermediate. These grains are too small for superconductivity to exist
in an isolated grain [13], since the corresponding level spacing δ = (2ν0l3)−1 exceeds the
bulk superconducting gap ∆, see Sec. 5 for the estimates (ν0 is the single-electron DoS at the
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Fermi level per one spin). Hence it is inter-grain tunneling transport that is responsible for
establishing superconductivity in granular Al. Therefore tunneling coupling cannot be weak
that excludes possibility to describe material properties in terms of a perturbation theory in
the tunneling Hamiltonian.

We will model polycrystalline media by a periodic set of metallic grains coupled through
identical tunnel barriers. Electron dynamics in each grain will be assumed chaotic, either
due to impurity scattering in the grain or due to random scattering on the boundaries (the
latter case is probably realized for granular Al). The effective Thouless energy of a grain,
ETh = ħh/τerg, determined by the time τerg needed to travel across the grain is assumed to
be much larger than the inelastic level width γ = ħh/τdwell due to tunneling to a neighboring
grain. Under this condition one may neglect spatial variations of the electron Green functions

inside each grain and describe them in the zero-mode approximation [14]. Note that it is
the inter-grain tunneling rate γ that determines the macroscopic diffusion coefficient D ∼ γl2,
regardless of the details of the intra-grain electron dynamics. For this reason, the effective
coherence length ξ(γ) is a function of γ. Center of vortex is always located at the corner
between three neighbouring grains, to minimize vortex energy.

In such a model, we will derive a discrete version of the Usadel equations [15] for electron
Green functions in the superconducting state, and solve them in the presence of a vortex.
The key parameter of our theory is the ratio of the effective coherence length ξ(γ) to the
distance between centers of neighboring grains l. For ξ/l ≫ 1, discreteness of the problem is
irrelevant and the quasiparticle spectrum does not differ from the one found in Ref. [2] for a
usual disordered superconductor. With decreasing the transparency γ, the coherence length ξ
decreases and at ξ/l < ζc we find a gap in the excitation spectrum, with its magnitude growing
with ξ/l decrease. The critical value ζc is non-universal; numerically we found ζc ≈ 1.4 for
the model of triangular array of hexagonal grains.

The rest of the paper is composed as follows: in Sec. 2 we derive the discrete Usadel and
self-consistency equations for a 2D model of a granular superconductor. The spacial distribu-
tion of the order parameter in presence of a vortex is calculated in Sec. 3. Section 4 is devoted
to the computation of the spatially resolved and integral density of states for various values of
our key parameter ξ/l. In Sec. 5 we establish the conditions on the film resistance needed to
have a gapless core. Finally, Sec. 6 contains our conclusions.

2 Discrete Usadel and self-consistency equations

We start from the action for granular superconducting system in the Matsubara formalism
assuming Green functions Q̂ i to be uniform within each ith grain:

S[Q] =
π

δ



−
∑

i

Tr
�

ϵτ̂3 + ∆̂i

�

Q̂ i − γ
∑

〈i j〉

Tr Q̂ iQ̂ j +
∑

i

|∆i|
2

πλT



 , (1)

where∆i = |∆i|eiϕi is the order parameter in the grain number i, ∆̂= τ+∆+τ−∆∗, parameter
γ measures tunneling conductance between grains, δ is the mean level spacing inside grain,
T is the temperature, and λ is the dimensionless Cooper coupling constant. In the zero-mode
approximation, when the intra-grain electron dynamics is irrelevant, the Q-part of the action
in each grain acquires a universal random-matrix form [14]. Summation in the second term of
the action (1) goes over all nearest-neighbouring pairs of grains connected by tunnel junctions.
While in real granular metal grain’s geometry and location are random, we will employ the
simplest 2D model where each grain is a hexagon of fixed size and their centers are packed
into the triangular lattice with the lattice constant l, see Fig. 1.
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l
Figure 1: Sketch of the considered model. Red dot designates the center of the vortex
that lies on the edge of three neighbouring grains as such location minimizes the free
energy.

Although real granular arrays are more 3D-like usually, our 2D model makes sense since
any nontrivial spatial dependence develops in the 2D plane transverse to the applied magnetic
field. Still, there are some differences between bulk and 2D situations, and we will comment
on this issue in the Discussion part of the paper.

Green functions in the grains are normalized as Q̂2 = 1̂, therefore the tunneling term
written as−γTr Q̂ iQ̂ j is equivalent to (γ/2)Tr(Q̂ i−Q̂ j)2, which is a discrete version of the usual
gradient term D Tr(∇Q̂)2, with the effective diffusion coefficient D = 3γl2 for the triangular
lattice shown in Fig. 1. The saddle-point equations corresponding to the action (1) read as
[Q̂ i ,δS/δQ̂ i] = 0, due to the constraint Q̂2 = 1̂. The saddle-point solution Q̂ i is diagonal in
Matsubara energies. In the angular representation it is given by

Q̂ i =

�

cosθi eiχi sinθi
e−iχi sinθi − cosθi

�

,

where the spectral angle θi(ε) and phase ϕi(ε) are energy-dependent. Then the saddle-point
equations acquire the form of the discrete Usadel equations:














γ
∑

j:〈i j〉

sinθ j sin
�

χi −χ j

�

= − sin (χi −ϕi) |∆i| , (2)

γ
∑

j:〈i j〉

�

cos
�

χ j −χi

�

cosθi sinθ j − sinθi cosθ j

�

− ε sinθi + cosθi |∆i| cos (ϕi −χi) = 0 . (3)

Varying the action over ∆∗, one supplements the Usadel equations with the self-consistency
equation for the order parameter:

∆i = πλT
ωD
∑

ε=−ωD

eiχi sinθi , (4)

where ωD is the Debye energy. Equation (4) should be solved with the boundary conditions
corresponding to the phase singularity located at the corner intersection of three grains, as
shown in Fig. 1; this point have coordinates (0, 0).

Equations (2), (3), and (4) constitute the set of self-consistence equations which describe
granular superconductor in the saddle-point approximation (in other terms, with dynamic
fluctuations of Q-matrices being neglected). We provide quantitative criterion for validity of
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this saddle-point approximation in the Discussion part of the paper; right now we just note
that this approximation is valid as long as inter-grain coupling energy γ is not too weak.

In the most general case, phases of the order parameter ϕi and of the Green function χi(ε)
(in the same grain) might be different. However, for tunnel junctions between grains (the
case we consider here) the difference between these phases is very small, as it contains higher
powers of transmission coefficients (which are all small in the tunnel junctions), see Ref. [16]
for a detailed discussion of this issue. Therefore we safely neglect that small difference and
set χi(ε)≡ φi . The phase ϕi of the ith grain is given by its vortex solution:

ϕi = arctan(yi/x i) . (5)

Here vector ri = (x i , yi) goes from the singularity point (0, 0) to the center of the i th grain.
Hence we only have to check that equation (2) is satisfied after solving the simplified version
of equations (3) and (4)


















|∆i|= πλT
ωD
∑

εn=−ωD

sinθi , (6)

γ
∑

j:〈i j〉

�

cos
�

ϕ j −ϕi

�

cosθi sinθ j − sinθi cosθ j

�

− ε sinθi + cosθi |∆i|= 0 . (7)

Now we have to check that solution for θ satisfies(with good numerical precision) Eq.(2). The
coupling constant λ is related with the Debye energy ωD via the BCS relation
λ= ln(1.14ωD/Tc), where Tc is the critical temperature. Our goal now is to find a vortex-like
solution for the order parameter distribution, and then we should solve Usadel equation (7)
at real energies E (that is, after replacement εn→ iE), to find DoS normalized over density of
states in a normal state as νi(E)/ν0 = Re cosθi(E).

3 Vortex solution for the order parameter

We solve numerically the system of equations (6) and (7) iteratively, using the following
axially-symmetric Ansatz for the order parameter distribution and the spectral angle:

∆i =∆0 tanh
ri

ξ
, θi(ε) = arctan

�

∆0

ε
tanh

ri

ξε

�

. (8)

The Ansatz for ∆i is chosen to interpolate between the linear behavior at r → 0 and
uniform asymptotics at infinity, |∆(r →∞)| →∆0 where ∆0 - is value of order parameter in
bulk continuous case without vortex. The parameter ξ plays the role of the coherence length
and will be optimized by the iterative procedure. The Ansatz for θi(ε) is chosen in a similar
way, it contains a set of energy-dependent lengths ξ(εn) to be optimized as well.

For the purpose of numerical study it is more convenient, instead of direct solution of Eqs.
(6) and(7), to minimize the action (1) over the Anzatz parameters ξ,ξε,θi(ε) after substitution
of the matrices Q̂ i and the order parameter ∆i in the form (8) into the action. We perform
this procedure for many different values of the interface transparency γ at low temperatures
T ≪ Tc (numerical computation was performed for T = 0.1 K assuming Tc = 2.2 K for bulk
Al). The obtained dependence of ξ(γ) is shown in Fig. 2. Since the usual expression for the
coherence length in the dirty limit is ξ =

p

D/2∆0, and in our problem D ∝ γ, we expect
ξ(γ)∝ γ1/2 at large ξ/l ≫ 1, which agrees with the numerical result shown in Fig. 2.
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Figure 2: Dependence of the effective coherence length ξ on the tunneling parameter
γ that determines the macroscopic diffusion constant D. Solid line is a guide for the
eyes that represents the square root dependence for γ≫∆.

4 Density of states: Minigap opening

With the obtained solution for∆(r), we can now find the spatially resolved DoS by solving the
Usadel equation (7) at real energies, i.e. after replacement εn→ iE. Anticipating the minigap
opening, it is useful to change the variable as θ = π/2+ iψ [17]. Then in terms of the new
variable ψi the discrete Usadel equation (7) reads

γ
∑

j:〈i j〉

�

cos
�

ϕi −ϕ j

�

sinhψi coshψ j − coshψi sinhψ j

�

− E coshψi + |∆| sinhψi = 0 , (9)

where ϕi is given by Eq. (5). Below we present our results for the space-resolved DoS
νi(E)/ν0 = Im sinhψi(E).

We start with Fig. 3, where we show typical dependencies of the DoS ν(E, ri) = νi(E) on
the distance ri from the center of an ith grain to the vortex center calculated at several ener-
gies E. The results are provided for two quite different choices of the coherence lengths: (a)
ξ/l = 4.6 (γ/∆0 = 2.2), and (b) ξ/l = 0.63 (γ/∆0 = 0.08). When the grains are well cou-
pled and ξ≫ l, we obtain gapless ν(r, E) distributions similar to those found for a uniformly
disordered superconductor [2], see Fig. 3(a). With decreasing the transparency of the inter-
grain boundaries and decreasing ξ, at ξ ∼ l, we see a qualitatively different behavior, with
the gap opening at low energies E < Eg , see Fig. 3(b). Namely, the DoS is identically zero
at E < 0.33∆0, while it is finite, yet small, at E = 0.34∆0 (see a peak at r/ξ ∼ 1). In other
terms, the solution we obtain points out to the development of a minigap Eg ≈ (0.34±0.01)∆0
in the spectrum of localized excitation in the vortex core, for the parameters of Fig. 3(b).

A different way to visualize the minigap is presented in Fig. 4, where we plot the DoS as
a function of energy at different distances from the vortex center, for the same two values of
ξ/l as in Fig. 3. When there are many grains in the core, at ξ/l ≫ 1, the spectrum is gapless,
with a finite DoS down to the Fermi energy, E = 0, see Fig. 4(a). At ξ/l ≈ 0.6, the effects of
granularity becomes important leading to a vanishing DoS below Eg ≈ 0.33∆0 for all distances
r, demonstrating the absence of low-energy excitations.

Low-temperature dissipation during vortex motion is determined by the low-energy global
DoS associated with a vortex. In Fig. 5(a) we plot the integral DoS

νI(E) =
∑

i

ν(E, ri) (10)
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(a) ξ/l = 4.6,γ/∆0 = 2.2 (b) ξ/l = 0.6, γ/∆0 = 0.08
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Figure 3: Normalized local DoS ν(E, r)/ν0 as a function of the distance to the center
of a vortex, r, at different energies for (a) ξ/l ≈ 4.6 and (b) ξ/l = 0.6. With many
grains in the core, ξ/a ≫ 1, the solution is similar to that in the continuous limit
found in Ref. [2]. At ξ/l ∼ 1, there appears a minigap Eg with a zero DOS at E < Eg .
A piece-wise shape of the curves is due to discretness of the values of ri for the lattice.

in the subgap region (E < ∆0) normalized by ν0ncore, where ncore = πξ2/Sgr is the number
of grains within the core, and Sgr =

p
3l2/2 is the grain area. For large enough ξ/l > 1.5 the

curves nearly overlap, following the behavior known for continuous Abrikosov vortices [2]. At
smaller values of ξ/l a minigap in the spectrum is clearly visible, with its magnitude growing
with the decrease of ξ/l. Figure 5(b) demonstrates the same quantity νI(E) at E >∆0, which
is now normalized by the whole area of the system, since the corresponding eigenstates are
delocalized. Here we see that starting from E/∆0 ≥ 1.2 the effects of granular structure are
nearly invisible, while at lower energies νI(E) is enhanced at small ξ/l.

Analysing the data like those shown in Fig. 5(a) for a number of different values ξ/l, we
found that the minigap opens at ξ/l = ζc , with ζc ≈ 1.4. The dependence of the minigap
magnitude Eg on ξ/l for ξ/l < ζc is shown in Fig. 6(a). In addition, in Fig. 6(b) we demon-
strate evolution of the integral DoS νI(0)/ν0 at zero energy as a function of ξ/l in the range
ξ/l > ζc . Note that νI(0) grows very sharply in the narrow range of ξ/l ≳ ζc just above the
threshold value.

5 Discussion

In this section we obtain an estimate for the range of parameters where gapful vortices could be
observed. While the level width γ is the main parameter, which controls the tunnel coupling
between neighboring grains, for practical purposes it is more convenient to work in terms
of the normal-state sheet resistance of the film, R□. The latter is related to γ via Einstein’s
relation for the bulk normal-state conductivity σ = 2ν0e2D (here the factor 2 accounts for
the electron spin) and the expression for diffusion coefficient D = 3γl2. Hence we obtain
e2R□/ħh= (6ν0γl2d)−1, where d is the film thickness.
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Figure 4: Normalized local DoS ν(E, r)/ν0 as a function of energy E for grains at
different distances to the vortex center, for (a) ξ/l ≈ 4.6 and (b) ξ/l ≈ 0.6, as in
Fig. 3. At ξ/l ≫ 1 and spectrum is gapless, while at ξ/l ≲ 1 there is a minigap with
vanishing DoS for E < Eg .

In what follows we will consider a film as consisting of d/l layers of grains of thickness
l each, so that d ≥ l. The level spacing inside each grain is then δ = (2ν0Sgrl)−1. Now
writing the coherence length as ξ2 = ħhD/2∆0, we can represent the condition ξ/l < ζc for
the existence of a minigap in terms of R□ and the ratio δ/∆0 in the form

e2R□
ħh

> 0.2
l
d
δ

∆0
, (11)

where we used ζc ≈ 1.4 numerically derived for Al. Using the normal-state DoS
2ν0 = 2.15×1034 erg−1cm−3, we estimate the level spacing for Al grains with the size l = 4 nm
as δ ≈ 8.4 · 10−16 erg, which is 3 times larger than the gap ∆0 ≈ 3.9 · 10−16 erg.

Another condition comes from the requirement already mentioned in Introduction that
the tunnelling coupling γ should not be too low, otherwise mean-field description of super-
conductivity will not be adequate and superconducting pairing will be suppressed due to level
quantization within single grain. The condition that allows to use usual approach with a self-
consistent order parameter can be found by comparing level spacing δ and coupling energy
between a grain and its surrounding, equal to 6γ for the triangular array shown in Fig. 1 where
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Figure 5: Integral DoS νI(E)/ν0 as a function of energy at different values of the
granularity parameter ξ/l: (a) subgap energies E <∆0, data normalized by ν0ncore;
(b) higher energies E >∆0, data normalized by ν0 times the total number of grains
in the system.
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Figure 6: (a) The minigap Eg as a function of ξ/l, vanishing at ξ/l = ζc ∼ 1.4. (b)
Dependence of the (normalized) integral DoS at zero energy on ξ/l.

each grain has 6 nearest neighbors. On a more formal level, the argument is as follows: to be
able to treat the action (1) within saddle-point approximation, we need to have the action cost
for Q̂-matrix fluctuations to be large, which means δ should be smaller than either ∆ (which
is not the case here), or 6γ. In terms of the sheet resistance, the resulting condition δ < 6γ
reads, for purely 2D array with l = d, as

e2R□
ħh

< 1 , (12)

which is compatible with Eq. (11) for l = d case if δ does not exceed 4∆0. Hence a gapful
vortex state is expected to exist in a resistivity window

0.2
δ

∆0
<

e2R□
ħh

< 1 , (13)

for pure 2D granular film. For thicker films with d ≫ l the right inequality in Eq. (13) should
be modified since the number of nearest neighbours in a typical dense 3D arrays is about 10-12
instead of 6. In result, the 3D analog of Eq. (13) reads as

0.2
δ

∆0

l
d
<

e2R□
ħh
≤

2l
d

, (14)

which makes the range of applicability of our approach broader for thicker films in comparison
to pure 2D ones.

A separate issue to be discussed is related with intrinsic inhomogeneity of natural granu-
lar films. First of all, let us discuss available experimental results concerning location of the
superconductor-insulator transition in granular Al. The data provided in Ref. [18] show that
superconducting state survive in relatively thick films with resistivity up to ρ ≈ 104µΩ cm,
while the film “H” with ρ = 3000 µΩ cm and thickness 30 nm is located relatively far inside
superconducting domain (see Fig. 3 of Ref. [18]), with Tc ≈ 2K. Dimensionless conductance
of this film is e2R□/ħh ≈ 0.25 while 2l/d ≈ 0.27 in the R.H.S. of Eq. (14). This comparison
tells us that in reality the condition for well-developed superconductivity to exist (and to be
described by self-consistent approach) is less stringent than Eq.(14) indicates. Now it is worth
to discuss the role of inhomogeneity of granular films in formation of a spectral gap. The major
kind of inhomogeneity is provided by spatial fluctuations the coupling strengths γi j . In result,
stronger junctions will form larger clusters of initial small grains, while weaker couplings will
form junctions between those clusters. Macroscopic conductivity of the film is controlled by
the typical coupling strength γtyp. Fluctuations in actual values of γi j lead therefore to the
increases of effective size of clusters (playing now the role of effective grans) which enter into
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our theory. In means, in turn, that the left inequality in Eq. (14) will be replaced by somewhat
less stringent condition. To summarize: spatial disorder of real granular media makes wider
the parameter region where gapful vortices can be found.

We checked also that our main result for the critical value ζc is left unchanged with re-
spect to slight variation of the BCS coupling constant λ between the values corresponding to
transition temperature of clean Al(Tc = 1.2K) and granular one (Tc = 2.2K).

6 Conclusions

We demonstrate that gapless electron states are absent inside the vortex core in a granular
superconductor with moderately weak coupling between grains, contrary to their classical
counterparts [1, 2]. The magnitude of the minigap is computed for a specific model of a
granular superconductor with triangular lattice of identical grains. A very similar effect of gap
opening in the spectrum of quasiparticle states localized in the vortex core has been recently
reported for a different problem of a vortex in a clean superconductor in the presence of
a planar defect [19, 20]. This points out a crucial role of extended defects in breaking the
continuity of the chiral branch of low-energy states in the vortex core.

In terms of the normal-state resistance of the film, for vortices without low-energy exci-
tations to exist, two conditions should be satisfied, as given by Eq. (13). For the magnitude
of the microwave quality factor Q(ω), the key issue is the comparison between ħhω and the
minigap Eg , those behavior is shown in Fig. 6(a) as a function of ξ/l for our model of identical
grains connected by identical junctions. In a real granular Al couplings γi j between grains
fluctuates; relatively strongly coupled grains may compose “supergrains” of larger size, which
are themselves coupled together by weaker couplings. Qualitatively, such situation is even
more favorable for the existence of “gapful vortices”, so they can exist in a broader range of
film’s resistances.

An additional effect that may contribute to the observed [5] suppression of microwave
losses is the increase of vortex pinning strength due to granularity; however, we do not ex-
pect this effect itself to be strong enough, as in the experiment Q-factor jumps up by the
factor ∼ 100.

Finally, we emphasize that in our idealized model the zero-energy DoS grows very sharp
when the parameter ξ/l exceeds its critical value, see Fig. 6(b). The same feature should be
expected for the vortex-related dissipation as well. In a real granular metal, we expect this
jump in dissipation to be smeared due to broad distribution of couplings γ.
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