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Anomalous Flux-Flow Dynamics in Layered Type-Il Superconductors at Low Temperatures
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Low-temperature dissipation due to vortex motion in strongly anisotropic type-ll superconductors
with a moderate disordenl/Er < li/T < A) is shown to be determined by the Zener-type transitions
between the localized electronic states in the vortex core. Statistics of these levels is described by the
random matrix ensemble of class C defined recently by Atland and Zirnbauer, so the vortex motion
leads naturally to a new example of a parametric statistics of energy levels. The flux-flow conductivity
o, is a bit lower than the quasiclassical one agmws slowly with the increase of the electric
field. [S0031-9007(97)02861-5]

PACS numbers: 74.60.Ge

It is generally accepted that the flux-flow longitudinal I' < wy, the core levels are essentially discrete; as a result,
(ox) and Hall @,) conductivities in the mixed state all dissipation induced by the motion of a vortex is due to
of type-Il superconductors are given, respectively, by theare nonadiabatic (Zener) processes of electron excitations
Bardeen-Steven (BS) [1] and Nozieres-Vinen [2] relationsbetween the core levels and subsequent downward electron

H,, transitions with emission of phonons. As a result, the
Tax = On"pms Oxy = (@07) 0, (1) longitudinal flux-flow conductivityo,, becomes reduced
compared to its “quasiclassical” value (1), and dependent

whereo, is the normal-state conductivity, is the elastic on the electric field:

lifetime with respect to impurity scattering, arity =

A2/E5 < A [it is supposed in (1) thawor < 1]. The ecn, E. wiB [
meaning of this relation is very simple: it reflects the fact xx = g woT 1 - E ) E. ~ e \os3’
that the core region of a vortex (of the are&?) may be P )
considered (with respect to its electronic properties) just
as a normal metal. This idea is based on the existenoghere the characteristic electric fidid is very small, so in
of the localized electronic levels within the core [3], the domain of applicability of our theory > E. (herep
with the energies constituting an equidistant ggt =  is the mass density of the crystalis some average sound
mhwg, whereu is a half-integer. A microscopic theory velocity, andc is the velocity of light). Note that according
of flux-flow conductivities, which explicitly takes into to Eq. (2) conductivitygrowswith the increase of electric
account an existence of this level structure was developefield (or current), which is the trend opposite to the one
long ago [4] (cf. also [5,6]). This theory is based onknown near the classical vortex depinning transition [8].
the quasiclassical nonequilibrium diagram technique (sed,his mechanism of nonlinearity is different from the one
e.g., [7]); its predictions fop,, andp,, basically coincide predicted in [9]; the fieldE. is by orders of magnitude
with the above simple picture as far as the superconductdower than its counterpart from Ref. [9]. Our result (2)
is not in the so-called superclean limit (i.e., if the inverseis expected to be valid in the range of not very high
electron-impurities scattering time~! is larger than the current densities = jx = jo(krl)~/2, wherel = vpr
level separationw,). The underlying idea of this theory is the elastic mean free path, arigl~ en.A/pr is the
is that the interaction between electrons localized near théepairing current density. On the other hand, the current
(moving) vortex and impurities can be treated as a kinddensity should be higher than the critical one which is
of scattering problem in the continuous spectrum, i.e.determined by pinning on the same impurity-produced
similar to the impurity scattering in a normal state. potential (this point is discussed at the end of the Letter).
In the present Letter we will show that in the case ofNote that the above result refers to the moderately clean
strongly anisotropic (layered) superconductors the validitcase wy < 7! < A/h, where theaveragedensity of
of the above picture is limited to the situations whenstates within the corév.(E)) is constant (aE = hw) as
the inelastic widthI" of the core electronic levels is inanormal metal. Therefore the effects we are discussing
comparable to or larger than the level spacinng Note are ofmesoscopic naturin the sense that they “feel” the
thatl’ = 'y, + T',, wherel'y, is due to electron-electron structure of correlations of energy levels. Thus the range
and (mainly) electron-phonon interactions and grows withof existence of these effects disappears with the growth
temperature, whereds, is due to nonstationarity of the of kpl: jx « (kpl)~1/2, Mesoscopic effects of a similar
impurity potential around a moving vortex, and growsorigin might also exist in a superclean as well as in a
with its velocity v, ; therefore the conditiod’ > w( is  dirty layered superconductor; these cases are postponed for
fulfilled at sufficiently largeT or v,. In the opposite limit, future studies.
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We are going to consider strongly anisotropic superconfU) one, with3 = 2. In fact, the situation is a bit more
ductors with a high effective mass anisotropy/m, >  complicated, because of the specific symmetry of the
1; it means a very weak dispersion of the core level'sBogolyubov—De Gennes equations determining the core

energies as a function ok., [E,(k;) — E,(0)]/i ~ levels: each of the positive-energy levéls > 0 has its
2 .
Mwofz_“l,zi < wo. It allows us, as long as the low-lying €Xact mirror counterpatk—;—; = —E;. As a result, the
< k7

levels with u < m./m, are relevant, to treat the core RME relevant for our problem does not coincide exactly

levels as purely discrete, which formally corresponds to é(‘"th U or any other of the standard ngrjer—_Dyson en-
“pancake” vortex in a 2D superconductor. sembles. Fortunately, the general classification of RME

At low temperatures any dissipation of energy related elateéj tol thed mixed sup(telrcobndli\ct'ilve(;norrgalzsystems
to the vortex motion is due to the transitions between dis¥/aS G€VEIOped very recently by Alland and zirnbauer

crete electron states within the core. In the absence é Z) [17], who identified four different types of RME

electron-phonon interaction these levels have almost zefgEPeNding on the presence or absence of time- and spin-
width (the inelastic width due to electron-electron inter-r€versal symmetries. Class C of the AZ classification just

actions for the system of discrete levels at low temperagqrrgsponds to our problem at hand. .The level §tatis_tics
ithin the C class can be described via the multiparticle

tures is even much weaker than the electron-phonon on&’,

cf. [10]), whereas their exact locations depend on the par-Wave function” of auxiliary “free fermions” in the same

ticular realization of impurities in the region of the size Way. as it was (_jone for 'ghe standarq. unitary en_semble
~¢ around the vortex centar,. The most direct way [14]; the only difference is the condition of vanishing

to study the statistics of random energy levels is to emgmplitude of single-particle wave functions in the origin

ploy a powerful machinery of the supersymmetric sigmaOf. th_e energy axigs = 0. As a result, the level statistics

model [11]. Here, however, we prefer to use atechnicall)}N ) . i .
simpler (although less general) path, sufficient for the cal®s highly excﬂet_j states with; >> lwo are involved, but
culation of the dissipation rate in the casgr << 1. This d|ffer_s for Iovy—lylng states. C
condition ensures that the position of each legglis It IS very instructive to compare the dISSIpa'tIOI’] rate
strongly modified with respect to the bare levels [3] of ano.bt"’“.mad via (3) with the results .Of the quasiclassical
ideally clean superconductor (in the following we denotekmetIC equation approach [4]. As will become clear soon,
positive-energy levels by; with i = 0, 1,..., whereas f[he_appllcabmty of the result (3)_ to the vortex dynamics
negativei will correspond toE; < 0). The second im- IS limited to the case when highly excited Iev_els are
portant point is that the wave functions corresponding t mportant, so at this stage we can neglect the difference

all these levels are confined in the same areg& within etween C and U ensembles, and use (3) vétk- 2.

the vortex core. Therefore it is quite natural to describéc0mparing the di;‘ﬁ”“.‘on ofthe vortex.damping coefficient
= T’VV . ’
(oW /ot ) with Eq. (3), one finds

the distribution of levels in terms of an appropriate ran-"
dom matrix ensemble (RME) [12]. When the vortex is
moving, the realization of disorder in the core region is 7hC(0) = Mkubo = mhnap(wor), (4)
changing, so the core levels are moving up and down, pre- -
senting a new example of a “parametric level statistics’Where. the sgcqnd equality in (4) fOIIOV.VS from the results
studied before with regard to disordered metallic grain§f [4] in the limit wor < 1, nop = n.d is the areal den-

and quantum dots (see, e.g., [13]). In our case the pararﬁ1ty of 'electronsd is the inter_layer spacing, and we put
eter X(1) governing the evolution of the levels is just the SUPSCIiPt “Kubo” to emphasize that the expression (4)

vortex coordinate, so one can try to make use of the relas the same meaning and the domain of applicability as

lation [13—16] between the rate of energy dissipation pe}he Kubo-Greenwood formula. The damping coefficient

pancake vortex (within the applicability of the standard”? is proportional to the longitudinal flux-flow conductiv-

Kubo approach) and the mean-squared level “velocities'y" Zx = nec/mhB. The parameteC(0) has the di-

((dE, /dX)?): mension of inverse area; one can define a characteristic
' ' length £L = C~1/2(0) with the following meaning: when
(AW /9t kubo = %whc(o) (0X /1), (3)  the vortex moves over the length, the characteristic dis-

placements of the core levels inside it become of the or-
where B8 = 1,2,4 for the system described by, respec-der of the mean spacing,. Then Eq. (4) tells us that
tively, orthogonal, unitary, and symplectic Wigner-Dyson £ = (nypwo7)~ /2. Note thatL decreases (i.e., the sen-
ensembles, and”(0) is the normalized dispersion of sitivity of the level positions to the shift of a vortex in-
level velocities, C(0) = ((dE;/dX)*)/(hwy)*> (here creases) with the decrease of disorder, and becomes of the
hwg = (E;+1 — E;)). Vortex solution breakd invari-  order of the Fermi wavelength aty ~ 1, i.e., on the bor-
ance, whereas it leaves invariance with respect to spider of the applicability of Eq. (4). On the other hand, in the
rotations intact (here and below we neglect Zeeman spiaxtremely disordered limikrI/ ~ 1, the lengthL would
splitting, which is weak as long & <« H.;). Therefore become of the order of the “clean” coherence length
one could, at first sight, conclude that the relevant for There are two ways to understand relation (3): (i) to
our problem Wigner-Dyson ensemble is just the unitaryconsider an open system with a finite width of the energy
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levels and use the standard Kubo-Greenwood approach 2732 A? 3/2 A?
[13], and (ii) to work with strictly discrete levels but N(e,4) = 3wy [85%3(:(0)} %_8h2w§C(0)>
take into account the nonadiabatic transitions between
the time-dependent (due to variation of the externals the joint probability distribution for the energy of
parameterX) levels E;(X), as was done in [15,16]. the lowest positive level and its velocity far from the
The first approach is clearly invalid in our case as far‘avoided crossing” region. Note that the rakg is just
as the inelastic widtH" < (. Following the second the factor 2 lower than the analogous result for the U
approach [16] we find that the Kubo-like expression (4)ensemble [15], which would also be valid in our problem
can be safely used if the characteristic frequency off the transitions between highly exited levels would be
level perturbationsy,, /L is much higher thanw, i.e., consideredR|;»; = 2Ro. In a similar problem treated
atv, > vg = volkpl)~'/2, wherevy = A/pr. Onthe in [15] (where all transition rates were equ&; = R),
other hand, at low vortex velocities, < vy and low the rate of energy absorption from the source was given
temperatures the probability of Zener transitions betweeby ZwoR, which coincided exactly with the result for
levels is exponentially low fexp(—vg/v,)] when the the Kubo regime, Eq. (3). This striking coincidence
interlevel spacing is of the order of its average valuetakes place, as was shown in [15,16]ly for the U
hwy. In this case dissipation occurs when in the course&nsemble (ensembles with the level repulsion parameter
of “level dynamics” the spacing between some pair of 3 = 1,4 lead to a velocity-dependent friction coefficient
the levels becomes very smallE = E; = hwo(v,/vk) 1 « vF/271),
and Zener tunneling becomes probable. In our case the situation is more complicated due
The crucial stage of the dissipation process is deterto the i dependence of the transition ratés; as a
mined by the nonadiabatic transitions of some electromesult, the dissipation rate depends on the distribution
from the highest negative-energy (filled) core lew&l,  function f;(z) for the electron’s population of thi¢h core
to the lowest positive-energy levél. The rate of these level, which is determined by the competition between
transitions can be calculated by the method [15] modifiedZener processes of excitation (the energy being absorbed
for the C class of the AZ classification (details will be from the source) and energy relaxation to the phonon

published elsewhere [18]): “bath” caused by electron-phonon interaction. The rate
o % ) of electron transitions between the core levels with energy
Ry = vyf dAf de N(e,A)exp — difference /iw due to the emission of 3D phonons
0 0 hAv, .
can be estimated [18] ab(w) = wypn, Where y,, =
= %vg, (5) V(wor)ﬁa)gnz])/ps3 < 1 (here it is assumed that <
@0 hiw, andv is the numerical coefficient of order 1). Thus
where the kinetic equation for the distribution functigi(z) is
|
afi(r) B B _ . e . B
Frani Rivi(fi = fix1) + Ri(fi — fi-1) = —wo¥pn Z(l Nl = fi] Z(] Df;lr—fil], (6
j<i j>i

which is a kind of discrete “diffusion equation” in thé states for the C ensemble. Thus we employ the simplest
energy space. Dimensional estimates show that the chamodel with the correct asymptotic behavior of the rates:
acteristic width of the stationary solutioff' is ichar ~ R;20 = R» = 2Ry. Within this model and af.,,, > 1
(Ro/woypn)'* ~ v, /vk (QpEr/liwgr)'/*,  usually we get aW/at = 2Ro[hwo + (Eo) (fo — f-1)], which
ichar IS large sincev, should be larger than the pinning- leads finally to the upper bound (cf. below) for the vortex

determined critical velocity,. (estimate forv./vg will damping coefficienty = (W /dt)/v2:

be given below), whereas the second factor in the above 7 VK —1/4

estimate is always very large. One can qualitatively F— =1 = vy =7 (7)
Kubo v

associate withi.p,, some “effective local temperature”
Terf(vy) ~ Rwoichar 3> o Of the core-localized elec- where »; ~ 1. Equation (7) together with the relation
trons. Because of the large effective width gf, the  between vortex velocity and electric field, = cE/B,
energy dissipation rateeW/dr is close to its value leads to the announced in Eq. (2) result for the con-
2Rohwy for the U ensemble (alk; = 2Ry), which is also  ductivity o,,. Equation (2) is valid up to temperatures
the result in the Kubo regime, as mentioned above. 1T =< T (v,); at higherT the width of £;* and the damp-
order to find correctionp — nxubo We need to specify ing coefficient are determined by temperature instead of
the ratesR;. It is very difficult to determineR; for  vortex velocity. Although the final result far,, is rather
generali ~ 1 because of the (i) randomness of energieslose to the one obtained within the quasiclassical pic-
where avoided crossing between levels 1 andi hap- ture (where continuous spectrum of electron states is as-
pens and (ii) energy dependence of the mean density agumed), the intrinsic mechanism of dissipation is quite
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different. One can understand it in the following terms:acteristic may be fulfilled in the clean single crystals of
the energy dissipation rate is a product of the rate ofayered superconductor NbSehere the main source of
inelastic transitionsk;, by the characteristic amount of disorder is due to random substitution of a small percent-
energy S E transferred at each transition; within our pic- age of Nb by Ta, which is known to produce very weak
ture Ry, is much lower than in the quasiclassic approachjmpurity centers [20]. Our results may also be relevant
whereas§ E is much larger by almost the same factor. for layered high-temperature superconductors, however, in
This consideration suggests that the behavior of the Hathat case the role af-wave pairing symmetry should be
conductivity o,,, which is of completely different physi- studied.
cal origin, may differ considerably from the correspond- In conclusion, we proposed a new mechanism of flux-
ing quasiclassical result,,/o,, = tanfy ~ wor. The flow dissipation operative in layered superconductors at
calculation of o, within our picture will be postponed low temperatures. The dissipative conductivisy, is
for future studies; here we just note that it can not befound to be close to the classical results [1,4] but is slowly
done within the purely RMT approach, since the latter nedependent upon the electric field. We suggest that, under
glects completely the correlations between energies of thihe same conditions, the Hall conductivity, may differ
core levels and their angular momenta. Such correlationsonsiderably from its quasiclassical value.
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