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Anomalous Flux-Flow Dynamics in Layered Type-II Superconductors at Low Temperatures

M. V. Feigel’man, and M. A. Skvortsov
L. D. Landau Institute for Theoretical Physics, Moscow 117940, Russia

(Received 18 September 1996)

Low-temperature dissipation due to vortex motion in strongly anisotropic type-II superconductors
with a moderate disorder (D2yEF ø h̄yt ø D) is shown to be determined by the Zener-type transitions
between the localized electronic states in the vortex core. Statistics of these levels is described by the
random matrix ensemble of class C defined recently by Atland and Zirnbauer, so the vortex motion
leads naturally to a new example of a parametric statistics of energy levels. The flux-flow conductivity
sxx is a bit lower than the quasiclassical one andgrows slowly with the increase of the electric
field. [S0031-9007(97)02861-5]
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It is generally accepted that the flux-flow longitudina
(sxx) and Hall (sxy) conductivities in the mixed state
of type-II superconductors are given, respectively, by t
Bardeen-Steven (BS) [1] and Nozieres-Vinen [2] relation

sxx ø sn
Hc2

B
; sxy ø sv0tdsxx , (1)

wheresn is the normal-state conductivity,t is the elastic
lifetime with respect to impurity scattering, and̄hv0 ø
D2yEF ø D [it is supposed in (1) thatv0t ø 1]. The
meaning of this relation is very simple: it reflects the fa
that the core region of a vortex (of the area,j2) may be
considered (with respect to its electronic properties) ju
as a normal metal. This idea is based on the existen
of the localized electronic levels within the core [3]
with the energies constituting an equidistant setEm ­
mh̄v0, wherem is a half-integer. A microscopic theory
of flux-flow conductivities, which explicitly takes into
account an existence of this level structure was develop
long ago [4] (cf. also [5,6]). This theory is based o
the quasiclassical nonequilibrium diagram technique (s
e.g., [7]); its predictions forrxx andrxy basically coincide
with the above simple picture as far as the superconduc
is not in the so-called superclean limit (i.e., if the invers
electron-impurities scattering timet21 is larger than the
level separationv0). The underlying idea of this theory
is that the interaction between electrons localized near
(moving) vortex and impurities can be treated as a kin
of scattering problem in the continuous spectrum, i.e
similar to the impurity scattering in a normal state.

In the present Letter we will show that in the case o
strongly anisotropic (layered) superconductors the valid
of the above picture is limited to the situations whe
the inelastic widthG of the core electronic levels is
comparable to or larger than the level spacingv0. Note
thatG ­ Gint 1 Gy, whereGint is due to electron-electron
and (mainly) electron-phonon interactions and grows wi
temperature, whereasGy is due to nonstationarity of the
impurity potential around a moving vortex, and grow
with its velocity yy; therefore the conditionG ¿ v0 is
fulfilled at sufficiently largeT or yy. In the opposite limit,
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G ø v0, the core levels are essentially discrete; as a resu
all dissipation induced by the motion of a vortex is due t
rare nonadiabatic (Zener) processes of electron excitatio
between the core levels and subsequent downward elect
transitions with emission of phonons. As a result, th
longitudinal flux-flow conductivitysxx becomes reduced
compared to its “quasiclassical” value (1), and depende
on the electric field:

sxx #
ecne

B
v0t

0@1 2

s
Ep

E

1A; Ep ø
v

2
0B
c

s
h̄

rs3 ,

(2)

where the characteristic electric fieldEp is very small, so in
the domain of applicability of our theoryE ¿ Ep (herer

is the mass density of the crystal,s is some average sound
velocity, andc is the velocity of light). Note that according
to Eq. (2) conductivitygrowswith the increase of electric
field (or current), which is the trend opposite to the on
known near the classical vortex depinning transition [8
This mechanism of nonlinearity is different from the on
predicted in [9]; the fieldEp is by orders of magnitude
lower than its counterpart from Ref. [9]. Our result (2
is expected to be valid in the range of not very hig
current densitiesj # jK ­ j0skFld21y2, where l ­ yFt

is the elastic mean free path, andj0 , eneDypF is the
depairing current density. On the other hand, the curre
density should be higher than the critical one which
determined by pinning on the same impurity-produce
potential (this point is discussed at the end of the Lette
Note that the above result refers to the moderately cle
casev0 ø t21 ø Dyh̄, where theaveragedensity of
states within the corekncsEdl is constant (atE $ h̄v0) as
in a normal metal. Therefore the effects we are discussi
are ofmesoscopic naturein the sense that they “feel” the
structure of correlations of energy levels. Thus the rang
of existence of these effects disappears with the grow
of kFl: jK ~ skFld21y2. Mesoscopic effects of a similar
origin might also exist in a superclean as well as in
dirty layered superconductor; these cases are postponed
future studies.
© 1997 The American Physical Society
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We are going to consider strongly anisotropic superco
ductors with a high effective mass anisotropymcyma ¿

1; it means a very weak dispersion of the core level
energies as a function ofkz, fEmskzd 2 Ems0dgyh̄ ,
mv0

ma

mc

k2
z

k2
F

ø v0. It allows us, as long as the low-lying
levels with m ø mcyma are relevant, to treat the core
levels as purely discrete, which formally corresponds to
“pancake” vortex in a 2D superconductor.

At low temperatures any dissipation of energy relate
to the vortex motion is due to the transitions between d
crete electron states within the core. In the absence
electron-phonon interaction these levels have almost z
width (the inelastic width due to electron-electron inte
actions for the system of discrete levels at low temper
tures is even much weaker than the electron-phonon o
cf. [10]), whereas their exact locations depend on the p
ticular realization of impurities in the region of the siz
,j around the vortex centerry . The most direct way
to study the statistics of random energy levels is to em
ploy a powerful machinery of the supersymmetric sigm
model [11]. Here, however, we prefer to use a technica
simpler (although less general) path, sufficient for the c
culation of the dissipation rate in the casev0t ø 1. This
condition ensures that the position of each levelEi is
strongly modified with respect to the bare levels [3] of a
ideally clean superconductor (in the following we deno
positive-energy levels byEi with i ­ 0, 1, . . . , whereas
negativei will correspond toEi , 0). The second im-
portant point is that the wave functions corresponding
all these levels are confined in the same area,j2 within
the vortex core. Therefore it is quite natural to describ
the distribution of levels in terms of an appropriate ran
dom matrix ensemble (RME) [12]. When the vortex i
moving, the realization of disorder in the core region
changing, so the core levels are moving up and down, p
senting a new example of a “parametric level statistic
studied before with regard to disordered metallic grai
and quantum dots (see, e.g., [13]). In our case the para
eterXstd governing the evolution of the levels is just th
vortex coordinate, so one can try to make use of the
lation [13–16] between the rate of energy dissipation p
pancake vortex (within the applicability of the standar
Kubo approach) and the mean-squared level “velocitie
ksdEiydXd2l:

s≠Wy≠tdKubo ­
b

2
p h̄Cs0d s≠Xy≠td2, (3)

where b ­ 1, 2, 4 for the system described by, respec
tively, orthogonal, unitary, and symplectic Wigner-Dyso
ensembles, andCs0d is the normalized dispersion of
level velocities, Cs0d ­ ksdEiydXd2lysh̄v0d2 (here
h̄v0 ­ kEi11 2 Eil). Vortex solution breaksT invari-
ance, whereas it leaves invariance with respect to s
rotations intact (here and below we neglect Zeeman s
splitting, which is weak as long asB ø Hc2). Therefore
one could, at first sight, conclude that the relevant f
our problem Wigner-Dyson ensemble is just the unita
n-
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(U) one, withb ­ 2. In fact, the situation is a bit more
complicated, because of the specific symmetry of th
Bogolyubov–De Gennes equations determining the co
levels: each of the positive-energy levelsEi . 0 has its
exact mirror counterpartE2i21 ­ 2Ei . As a result, the
RME relevant for our problem does not coincide exactl
with U or any other of the standard Wigner-Dyson en
sembles. Fortunately, the general classification of RM
related to the mixed superconductive-normal system
was developed very recently by Atland and Zirnbaue
(AZ) [17], who identified four different types of RME
depending on the presence or absence of time- and sp
reversal symmetries. Class C of the AZ classification ju
corresponds to our problem at hand. The level statisti
within the C class can be described via the multiparticl
“wave function” of auxiliary “free fermions” in the same
way as it was done for the standard unitary ensemb
[14]; the only difference is the condition of vanishing
amplitude of single-particle wave functions in the origin
of the energy axisE ­ 0. As a result, the level statistics
within the C class coincides with that of the U class as fa
as highly excited states withEi ¿ h̄v0 are involved, but
differs for low-lying states.

It is very instructive to compare the dissipation rate
obtained via (3) with the results of the quasiclassica
kinetic equation approach [4]. As will become clear soon
the applicability of the result (3) to the vortex dynamics
is limited to the case when highly excited levels ar
important, so at this stage we can neglect the differen
between C and U ensembles, and use (3) withb ­ 2.
Comparing the definition of the vortex damping coefficien
h (≠Wy≠t ­ hvv

2) with Eq. (3), one finds

p h̄Cs0d ­ hKubo ­ p h̄n2Dsv0td , (4)

where the second equality in (4) follows from the result
of [4] in the limit v0t ø 1, n2D ­ ned is the areal den-
sity of electrons,d is the interlayer spacing, and we put
subscript “Kubo” to emphasize that the expression (4
has the same meaning and the domain of applicability
the Kubo-Greenwood formula. The damping coefficien
h is proportional to the longitudinal flux-flow conductiv-
ity: sxx ­ hecyp h̄B. The parameterCs0d has the di-
mension of inverse area; one can define a characteris
lengthL ­ C21y2s0d with the following meaning: when
the vortex moves over the lengthL , the characteristic dis-
placements of the core levels inside it become of the o
der of the mean spacingv0. Then Eq. (4) tells us that
L ­ sn2Dv0td21y2. Note thatL decreases (i.e., the sen-
sitivity of the level positions to the shift of a vortex in-
creases) with the decrease of disorder, and becomes of
order of the Fermi wavelength atv0t , 1, i.e., on the bor-
der of the applicability of Eq. (4). On the other hand, in the
extremely disordered limit,kFl , 1, the lengthL would
become of the order of the “clean” coherence lengthj0.

There are two ways to understand relation (3): (i) t
consider an open system with a finite width of the energ
2641
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levels and use the standard Kubo-Greenwood appro
[13], and (ii) to work with strictly discrete levels but
take into account the nonadiabatic transitions betwe
the time-dependent (due to variation of the extern
parameterX) levels EisXd, as was done in [15,16].
The first approach is clearly invalid in our case as f
as the inelastic widthG ø v0. Following the second
approach [16] we find that the Kubo-like expression (4
can be safely used if the characteristic frequency
level perturbationsyyyL is much higher thanv0, i.e.,
at yy ¿ yK ­ y0skFld21y2, wherey0 ­ DypF . On the
other hand, at low vortex velocitiesyy ø yK and low
temperatures the probability of Zener transitions betwe
levels is exponentially low [,exps2yK yyyd] when the
interlevel spacing is of the order of its average valu
h̄v0. In this case dissipation occurs when in the cour
of “level dynamics” the spacing between some pair
the levels becomes very small,dE # EZ ­ h̄v0syyyyK d
and Zener tunneling becomes probable.

The crucial stage of the dissipation process is det
mined by the nonadiabatic transitions of some electr
from the highest negative-energy (filled) core levelE21

to the lowest positive-energy levelE0. The rate of these
transitions can be calculated by the method [15] modifi
for the C class of the AZ classification (details will be
published elsewhere [18]):

R0 ­ yy

Z `

0
dA

Z `

0
de Nse, Ad exp

√
2

2pe2

h̄Ayy

!
­

hKubo

2h̄v0
y2

y , (5)
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Nse, Ad ­
2p3y2e

3h̄3v
3
0

∑
A2

8h̄2v
2
0Cs0d

∏3y2

exp

µ
2

A2

8h̄2v
2
0Cs0d

∂
is the joint probability distribution for the energye of
the lowest positive level and its velocityA far from the
“avoided crossing” region. Note that the rateR0 is just
the factor 2 lower than the analogous result for the
ensemble [15], which would also be valid in our proble
if the transitions between highly exited levels would b
considered:Rjij¿1 ø 2R0. In a similar problem treated
in [15] (where all transition rates were equal,Ri ­ R),
the rate of energy absorption from the source was giv
by h̄v0R, which coincided exactly with the result for
the Kubo regime, Eq. (3). This striking coincidenc
takes place, as was shown in [15,16],only for the U
ensemble (ensembles with the level repulsion parame
b ­ 1, 4 lead to a velocity-dependent friction coefficien
h ~ yby221).

In our case the situation is more complicated d
to the i dependence of the transition ratesRi; as a
result, the dissipation rate depends on the distributi
function fistd for the electron’s population of theith core
level, which is determined by the competition betwee
Zener processes of excitation (the energy being absor
from the source) and energy relaxation to the phon
“bath” caused by electron-phonon interaction. The ra
of electron transitions between the core levels with ener
difference h̄v due to the emission of 3D phonon
can be estimated [18] asGsvd ­ vgph, where gph ­
nsv0tdh̄v

2
0n2Dyrs3 ø 1 (here it is assumed thatT #

h̄v, andn is the numerical coefficient of order 1). Thu
the kinetic equation for the distribution functionfistd is
≠fistd
≠t

1 Ri11s fi 2 fi11d 1 Ris fi 2 fi21d ­ 2v0gph

0@X
j,i

si 2 jdfif1 2 fjg 2
X
j.i

s j 2 idfjf1 2 fig

1A , (6)
-
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which is a kind of discrete “diffusion equation” in the
energy space. Dimensional estimates show that the ch
acteristic width of the stationary solutionfst

i is ichar ,
sR0yv0gphd1y4 ,

p
yyyyK sVDEFyh̄v

3
0td1y4; usually

ichar is large sinceyy should be larger than the pinning
determined critical velocityyc (estimate forycyyK will
be given below), whereas the second factor in the abo
estimate is always very large. One can qualitative
associate withichar some “effective local temperature”
Teffsyyd , h̄v0ichar ¿ h̄v0 of the core-localized elec-
trons. Because of the large effective width offst

i , the
energy dissipation rate≠Wy≠t is close to its value
2R0h̄v0 for the U ensemble (allRi ­ 2R0), which is also
the result in the Kubo regime, as mentioned above.
order to find correctionh 2 hKubo we need to specify
the ratesRi. It is very difficult to determineRi for
generali , 1 because of the (i) randomness of energi
where avoided crossing between levelsi 2 1 and i hap-
pens and (ii) energy dependence of the mean density
ar-

ve
y

In

s

of

states for the C ensemble. Thus we employ the simp
model with the correct asymptotic behavior of the rate
Rifi0 ­ R` ­ 2R0. Within this model and atichar ¿ 1
we get ≠Wy≠t ­ 2R0fh̄v0 1 kE0l s f0 2 f21dg, which
leads finally to the upper bound (cf. below) for the vorte
damping coefficienth ­ s≠Wy≠tdyy2

y:

h

hKubo
# 1 2 n1

r
yK

yy

g
21y4
ph , (7)

where n1 , 1. Equation (7) together with the relation
between vortex velocity and electric field,yy ­ cEyB,
leads to the announced in Eq. (2) result for the co
ductivity sxx . Equation (2) is valid up to temperature
T # Teffsyyd; at higherT the width offst

i and the damp-
ing coefficient are determined by temperature instead
vortex velocity. Although the final result forsxx is rather
close to the one obtained within the quasiclassical p
ture (where continuous spectrum of electron states is
sumed), the intrinsic mechanism of dissipation is qu
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different. One can understand it in the following term
the energy dissipation rate is a product of the rate
inelastic transitionsRin by the characteristic amount of
energydE transferred at each transition; within our pic
ture Rin is much lower than in the quasiclassic approac
whereasdE is much larger by almost the same facto
This consideration suggests that the behavior of the H
conductivitysxy , which is of completely different physi-
cal origin, may differ considerably from the correspond
ing quasiclassical resultsxyysxx ; tanuH , v0t. The
calculation ofsxy within our picture will be postponed
for future studies; here we just note that it can not b
done within the purely RMT approach, since the latter n
glects completely the correlations between energies of
core levels and their angular momenta. Such correlatio
(which survive under moderate disorder) are irrelevant f
the energy dissipation rate (which depends on the sho
scale structure of level correlations only), but are cruc
for the transverse nondissipative force acting on a vorte

We treat Eq. (7) as an upper bound for the dissipati
since we have used, when deriving Eq. (7), a model th
overestimates the transition ratesRnfi0. One could also
wonder about another source of overestimation ofh, due
to the fact that we have employed a purely classical mas
equation (6) for the probability distribution functionfistd.
It means that we neglected possible phase coherence
electron states on a time scaleR21

0 between two successive
Zener transitions. The effects of localization due to a pha
coherence were considered in [19] for the problem of t
electron transport in mesoscopic rings. However, our ca
differs considerably from the one studied in [19], in that th
electrons inside the moving vortex feel a time-depende
random potential which has no periodicity. We checke
numerically on an appropriate model that in the absense
periodicity the diffusion over energy spectrum is retaine
intact even if the Zener processes are phase coherent.

In the above calculations we have assumed that the v
tex is moving with a constant velocityyy, which means
that the driving current densityj ­ yyehysp h̄ cosuH d
is higher than the pinning-induced critical current den
sity jc, so the corresponding “critical velocity”yc ø

yy. On the other hand,yy was assumed be small com
pared toyK ­ Dyh̄k

3y2
F l1y2. Critical current density for

the pinning of an individual pancake vortex in layere
superconductor on weak impurities can be estimated
asjc ø j0s0.1simpyldd1y2, wherej0 is the depairing cur-
rent density andsimp ­ slnid21 is the electron-impurity
scattering cross section (ni is the impurity concentra-
tion). Using a “pessimistic” estimateuH ø 1 we get
the compatibility condition for our theory in the form
5 3 1022kFsimpyd ø sv0td2 # 1. Thus the proposed
scenario may be realized in the case of very weak impu
ties with a cross section small on the atomic scale. No
however, that the above condition may actually be le
stringent due to the decrease ofjc with the magnetic field
already in the rangeB ø Hc2 [8]. We believe that the
necessary conditions for observing a nonlinearI-V char-
:
of

-
h,
r.
all

-

e
e-
he
ns
or
rt-
al
x.
n
at

ter

of

se
e
se
e
nt
d
of
d

or-

-

-

d
[8]

ri-
te,
ss

acteristic may be fulfilled in the clean single crystals of
layered superconductor NbSe2 where the main source of
disorder is due to random substitution of a small percent
age of Nb by Ta, which is known to produce very weak
impurity centers [20]. Our results may also be relevant
for layered high-temperature superconductors, however, i
that case the role ofd-wave pairing symmetry should be
studied.

In conclusion, we proposed a new mechanism of flux-
flow dissipation operative in layered superconductors a
low temperatures. The dissipative conductivitysxx is
found to be close to the classical results [1,4] but is slowly
dependent upon the electric field. We suggest that, unde
the same conditions, the Hall conductivitysxy may differ
considerably from its quasiclassical value.
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