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We study quantum interference effects in a two-dimensional chiral metal (bipartite lattice) with vacancies.
We demonstrate that randomly distributed vacancies constitute a peculiar type of chiral disorder leading to
strong modifications of critical properties at zero energy as compared to those of conventional chiral metals.
In particular, the average density of states diverges as ρ ∝ E−1j lnEj−3=2 and the correlation length Lc ∝ffiffiffiffiffiffiffiffiffiffiffiffij lnEjp

in the limit E → 0. When the average density of vacancies is different in the two sublattices, a finite
concentration of zero modes emerges and a gap in the quasiclassical density of states opens around zero
energy. Interference effects smear this gap, resulting in exponentially small tails at low energies.
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Introduction.—Anderson localization [1] remains in the
focus of condensed-matter research. Development of the
symmetry [2] and topology [3] classification of disordered
systems is one of the central advances in the field. It has
been realized that underlying symmetries and topologies
induce a rich variety of localization phenomena, including,
in particular, critical phases and quantum phase transitions
between metallic and insulating states [4].
The symmetry classification of disordered systems [2,4]

includes three families of symmetry classes: conventional
(Wigner-Dyson), chiral, and superconducting (Bogoliubov–
de Gennes). In this Letter, we consider two-dimensional
(2D) chiral models. Chiral symmetry (classes AIII, BDI,
and CII) implies that the Hamiltonian can be arranged in the
form of a block off-diagonal matrix. A standard realization
of such a system is provided by a bipartite lattice with
random hopping. In contrast to Wigner-Dyson classes,
chiral systems exhibit very unusual localization properties.
A remarkable feature of the chiral metal is the exact absence
of localization corrections to all orders in the perturbation
theory [5]. At the same time, the density of states (DOS) is
strongly modified by the quantum interference effects and
diverges at the center of the band. As was shown in Ref. [6],
localization effects do emerge in chiral models when the
theory is treated nonperturbatively. Specifically, the locali-
zation is controlled by topological vortexlike excitations
of the sigma model, in similarity with the Berezinskii-
Kosterlitz-Thouless phase transition [7].
The experimental discovery of graphene [8] and exten-

sive study of its peculiar transport properties near the Dirac
point has given an additional boost to studying quantum
transport in systems with chiral symmetry. In particular,

long-range lattice corrugations (ripples) in graphene gen-
erate an effective random magnetic field acting within each
valley [9], placing the system into the chiral unitary class
AIII. A hexagonal lattice with vacancies falls into the chiral
orthogonal class BDI. Avacancy can be modeled by cutting
all lattice bonds adjacent to the vacant site, which yields a
special type of bond disorder [10]. Chemical adsorbents,
such as hydrogen, attached to individual graphene atoms
can be approximated as vacancies since the strong on-site
potential prevents an electron from occupying the impurity
site. Another realization of class AIII is provided by
quasiparticles in d-wave superconductors with vacancies
and nesting [11]. Singular DOS in a d-wave superconduc-
tor with strong impurities was discussed in Refs. [11,12].
Bipartite lattices with randomly located vacancies

belonging to the chiral symmetry class constitute the
subject of the present Letter. We will show that vacancies
crucially modify interference effects close to the center of
the band (Dirac point in case of graphene) leading to
enhanced DOS and reduced localization length as com-
pared to other realizations of chiral systems. These mod-
ifications are intimately related to zero modes arising in
bipartite systems with an unequal number of sites in the two
sublattices. We will develop the nonlinear sigma model
formalism for chiral systems with vacancies and demon-
strate how the zero modes affect localization phenomena.
Model and field theory.—As a model system, we

consider a nearest-neighbor hopping Hamiltonian on the
bilayer square lattice with t and t0 þ hðrÞ being the intra-
and interlayer hopping amplitudes, respectively. The latter
amplitude contains a relatively small complex random part
hðrÞ. This model belongs to the chiral unitary class AIII
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and is equivalent to the model studied by Gade and Wegner
[5]. The vacancies will be introduced as a strong potential V
(to be later sent to infinity) applied to randomly selected
sites with the average densities nA and nB in the two
sublattices. The Hamiltonian for such a model has the
following form in the sublattice basis:

H ¼
�

VAðrÞ ξðpÞ þ hðrÞ
ξðpÞ þ h�ðrÞ VBðrÞ

�
: ð1Þ

We assume that t0 is slightly less than 2t; then the low-energy
states are located close to the center of the Brillouin zone and
the kinetic part of the Hamiltonian acquires the quadratic
form ξðpÞ ¼ p2=2m − μ with m ¼ 1=ta2 and μ ¼ 2t − t0,
where a is the lattice spacing. We assume that the random-
hopping part obeys a Gaussian distribution with hhi¼0
and hhðrÞh�ðr0Þi¼δr;r0=2πντ, where ν¼m=2π is the clean-
system DOS per band and τ is the mean free time induced
by the bond disorder. The on-site potential modeling vacan-
cies is contained in the VA;B terms of the Hamiltonian (1).
These terms are diagonal in sublattice space and manifestly
violate the chiral symmetry. However, the symmetry will be
restored later when we take the limit V → ∞.
On the quasiclassical level, disorder effects can be taken

into account with the help of self-consistent T-matrix
approximation (see the Supplemental Material [13] for
details). Gaussian bond disorder hðrÞ and vacancies with
the concentration n contribute 1=τ and n=πν to the electron
scattering rate (note that the scattering cross section for a
vacancy is λF=π, where λF is the Fermi wave length). To
simplify the derivation, we assume that the bond disorder
is dominant, i.e., n ≪ ν=τ. As discussed below, this
assumption is, in fact, not essential.
To compute the DOS at low energies, we use the

nonlinear sigma model formalism. The starting point is
the replicated action for the fermion fields,

S ¼ −i
Z

drψ†½Eþ i0 −H�ψ : ð2Þ

Here, ψ ¼ fψA;ψBgT is a 2N-component vector of
Grassmann fields operating in the space of two sublattices
(A and B) and N replicas. We first disregard vacancies and
derive the sigma model for Gaussian bond disorder in the
standard way [5] (for details see the Supplemental Material
[13]): average over h, perform the Hubbard-Stratonovich
transformation (introducing the field Q), integrate out ψ ,
restrict the matrix Q to the saddle manifoldQ ∈ UðNÞ, and
carry out the gradient expansion. This program results in
the sigma model for the unitary matrix Q of the symmetry
class AIII. Vacancies are then taken into account perturba-
tively in the leading order of the virial expansion in the
small parameter nτ=ν. The resulting sigma-model action
contains three terms: S ¼ Sσ þ SE þ SV with

Sσ ¼
Z

dr
8π

½σtrð∇Q†∇QÞ − cðtrQ†∇QÞ2�; ð3aÞ

SE ¼ iπνE
Z

drtrðQ† þQÞ; ð3bÞ

SV ¼
Z

dr

�
2πνΔ ln detQ −

n
2
ðln detQÞ2

�
: ð3cÞ

In the kinetic part of the action Sσ , the parameter σ ¼
2π2νv2τ is the dimensionless Drude conductivity in units
e2=πh, where v is the Fermi velocity. The second term in Sσ
is commonly referred to as the Gade term and is generated in
the course of renormalization. Averaging over the random
distribution of vacancies yields the additional action SV with

Δ ¼ ðnA − nBÞ=2πν; n ¼ nA þ nB: ð4Þ
Here, nA;B are concentrations of vacancies in the two
sublattices.
Adetailed derivationof the sigmamodel is presented in the

Supplemental Material [13]. Here, we give a qualitative
explanation for the term SV , which appears due to vacancies.
Let us coarse grain the sample into pieces of the size l ¼ vτ
that is themean free path.We assume that each piece contains
NA;B ¼ nA;Bl2 ≫ 1 vacancies in the two sublattices on
average [14]. The matrix Q changes slowly on the scale l;
hence, each grain can be described by the effective zero-
dimensional (0D) model. The problem of the spectrum of a
random chiral matrix with the imbalance between A and B
states was considered in Refs. [15,16]. It was shown that a
fixed imbalance leads to the term ðNA − NBÞ ln detQ in the
sigma-model action. This is exactly the first term of Eq. (3c)
integrated over the area l2. The parameter Δ is thus the ave-
rage density of imbalance. The actual local value of the imba-
lance fluctuates in spacewith hðNA − NBÞ2i1=2 ¼ nl2. These
fluctuations are accounted for by the second term of Eq. (3c).
The dominant bond disorder hðrÞ used in our model (1) is

actually not essential. One can consider the extreme case
when vacancies are the only type of disorder in the system.
The mean free path l ¼ πνv=n is then much longer than
thedistancebetween impurities.The sigmamodel can still be
derived in this limit with a help of superbosonization
technique [17]; this will be a subject of a separate publica-
tion. Finally, the average DOS is given, within the replica
sigma-model formalism, by

ρðEÞ ¼ −Imlim
N→0

1

πN
∂
∂E

Z
DQe−S½Q�: ð5Þ

A comment on the action symmetry is in order here. The
kinetic action Sσ is invariant under global left and right rota-
tions Q ↦ U†

LQUR with any spatially constant unitary
matrices UL;R. This symmetry is inherited from the original
fermionic action (2). Indeed, the latter is invariant under the
transformation ψA;B↦UL;RψA;B, ψ†

A;B↦ψ†
A;BU

†
R;L, when

both energy E and on-site potentials VA;B vanish.
Although the vacancies preserve the chiral symmetry of
the Hamiltonian, the action SV partially breaks the UðNÞ ×
UðNÞ symmetry of the sigmamodel for the following reason.
When the number of vacant sites in the two sublattices is
different, the number of ψA and ψB fields is also different.
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Even though the action (2) retains its full symmetry, the
invariance of the corresponding path integral in ψ and ψ†

requires also that the transformation Jacobian is unity, i.e.,
detUL ¼ detUR.Hence, only the transformationspreserving
detQ are true symmetries of thepath integral andof the action
SV . We conclude that vacancies effectively reduce the target
space of the sigma model from UðNÞ down to SUðNÞ.
0D limit.—We begin our analysis of the sigma model

with the 0D limit. Assume a sample of a finite size L2

and energies low enough to neglect the kinetic action Sσ.
On average, such a sample contains NA;B ¼ nA;BL2 ≫ 1
vacancies in the two sublattices. For a fixed imbalance
NA − NB, Refs. [15,16] provide an exact solution of the
problem. For our purposes, an approximate quasiclassical
solution is sufficient. To obtain it, we take the spatially
constant and diagonal-in-replicas minimum of the action.
Using the ansatz Q ¼ eiϕ, we compute the variation of
SE þ SV and obtain, in the limit N → 0, sinϕ ¼ Δ=E. The
DOS, Eq. (5), is then given by

ρðEÞ ¼ 2ν
h
πδðE=ΔÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ2=E2

q i
: ð6Þ

The DOS exhibits a gap at energies jEj < Δ with a delta
peak in the center due to zero modes.
The fluctuations of the imbalance can be now taken into

account by averaging the above result with respect to
Gaussian fluctuations of the gap with the mean value Δ and
dispersion r ¼ ffiffiffi

n
p

=2πνL. The result of this averaging
(Supplemental Material [13]) is displayed in Fig. 1. At low
energies and at small imbalance,E;Δ≪ r, the 0DDOS reads

ρ0DðE;LÞ≃
ffiffiffiffiffiffi
2π

p
ν½2rδðEÞ þ E=r�: ð7Þ

Renormalization group.—We are now in a position to
solve the 2D problem. The spatial fluctuations of the
sigma-model field Q will be taken into account with the
help of the renormalization group (RG). At the last step
we will apply the 0D result to the renormalized theory. The
RG for the chiral sigma model was first discussed by Gade
and Wegner [5]. It was shown that the conductivity is not
renormalized to all orders of the perturbation theory in the

parameter 1=σ ≪ 1. At the same time, a new coupling c
[see Eq. (3a)] is generated by the RG. The corresponding
RG equations have the following form in the replica limit:

∂σ=∂ lnL ¼ 0; ∂c=∂ lnL ¼ 1: ð8Þ
Note that both equations are exact to all orders in 1=σ in the
symmetry class AIII. The couplings Δ and n, introduced in
the action SV , Eq. (3c), are also not renormalized. To prove
this, we separate the matrix Q ¼ eiϕU into the phase factor
and a matrix with unit determinant, detU ¼ 1. The
variables ϕ and U decouple at E ¼ 0,

SσþSV ¼
Z

dr

�
σ

8π
trð∇U†∇UÞ

þN

�
σþNc
8π

ð∇ϕÞ2þ2iπνΔϕþnN
2
ϕ2

��
: ð9Þ

The action for ϕ is quadratic, so its parameters are not
renormalized. In particular, this proves that σ is not
renormalized in the replica limit. From the above action
we also see that the vacancy concentration n indeed
provides a mass for the fluctuations of ϕ, thus breaking
the symmetry UðNÞ ↦ SUðNÞ as discussed above.
A finite energy E breaks the chiral symmetry of the

problem and couples ϕ and U variables. To find the
renormalization of energy, we separate fast and slow fields
Q ¼ QslowQfast and expand Qfast ¼ 1þ iW −W2=2. The
dynamics of Qfast is governed by the action Sσ þ SV ,
yielding the propagator

hW−qWqi ¼
4π

σq2

�
N −

cq2 þ 4πn
σq2 þ Nðcq2 þ 4πnÞ

�
: ð10Þ

Correction to the energy is represented in the differential
form dE=E ¼ −hW2i=2, where the right-hand side is inte-
grated over the fast momentum shell L < q−1 < Lþ dL.
Using Eq. (10) and taking the limit N → 0, we obtain the
one-loop flow equation for energy,

∂ lnE=∂ lnL ¼ ðcþ 4πnL2Þ=σ2: ð11Þ
In the absence of vacancies (n ¼ 0), this equation reproduces
the result of Ref. [5]. However, any finite concentration
n eventually leads to a dramatic acceleration of the energy
renormalization. Indeed, the parameter c grows only as lnL
according to Eq. (8). Thus, we will neglect c compared to
nL2, which is always justified at long scales (low energies).
The RG flow stops at a critical scale Lc determined by

σ=νL2
c ∼maxf ~E;Δg, where ~E ∼ EenL

2
c=σ2 is the renormal-

ized energy. The DOS is then given by the 0D result, Eq. (7),
taken at the scale Lc: ρðEÞ ¼ ρ0Dð ~E;LcÞ ~E=E. The factor
~E=E appears here due to renormalization of energy in the
derivative in Eq. (5).
In the balanced case nA ¼ nB, i.e., Δ ¼ 0, we have the

following result for the correlation length and DOS:

LcðEÞ ∼ σn−1=2j lnEτnj1=2; ð12Þ

0 1 2 3 4

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1 (color online). Average DOS in the 0D chiral system
with fluctuating imbalance. Dashed lines show quasiclassical
result (6). At low energies, DOS vanishes linearly, cf. Eq. (7).
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ρðEÞ ∼ σ

EL2
c
×

σffiffiffi
n

p
Lc

∼
ν

Eτnj lnEτnj3=2
: ð13Þ

Here, we introduced a time scale related to vacancies,
τn ¼ 4πνσ=n.
These results should be contrasted with the low-energy

behavior found by Gade and Wegner for the chiral model
without vacancies, LcðEÞ ∼ exp½σj lnEjκ� with κ ¼ 1=2 and
ρðEÞ ∼ 1=EL2

cðEÞ [5,18]. We see that in the presence of vac-
ancies the above result is modified in twoways: (i) the corre-
lation length Lc diverges much more slowly at E → 0 due to
an additional term in the flow equation (11), and (ii) theDOS,
Eq. (13), acquires an extra factor σ=

ffiffiffi
n

p
Lc. This factor is the

probability that in a sample of size Lc, where the imbalance
has a variance n2L4

c, the quasiclassical gap is less than ~EðLcÞ.
Note that it is this factor that renders Eq. (13) integrable.
When vacancies are weakly imbalanced, Δτn ≪ 1, the

correlation length saturates at the value Lc ¼
ffiffiffiffiffiffiffiffiffiffiffi
σ=νΔ

p
and

the DOS linearly drops to zero at exponentially small
energies. A finite density of zero modes introduces a delta
peak in the DOS

ρðE ≪ Δe−1=ΔτnÞ ∝ νffiffiffiffiffiffiffiffi
Δτn

p
�
δ

�
E
Δ

�
þ Eτne1=Δτn

�
: ð14Þ

Here, the amplitude of the delta peak is accurate up to a
numerical factor of order unity while the second term
contains a similar factor in the exponent. A crossover
between Eqs. (13) and (14) in the case of a weak imbalance
is illustrated in Fig. 2.
Strong imbalance.—When the imbalance is strong,

Δτn ≫ 1, renormalization of energy is weak and the
DOS is approximately given by the quasiclassical result
(6); see Fig. 2. Rare fluctuations produce an exponentially
small subgap tail at E < Δ. We will compute this tail by the
optimal fluctuation method. In the sigma-model formalism,
it amounts to finding a replica-symmetry-breaking saddle
point of the action (instanton). The problem is similar to a
calculation of the subgap DOS in a superconductor with a
fluctuating order parameter [19–21].

We look for an instanton with diagonal matrix structure
Q ¼ eiϕ1;2 with the phase ϕ1 in one replica and ϕ2 in other
N − 1 replicas. The variation of the total action Sσ þ SE þ
SV (with the Gade term neglected) yields two coupled
equations for ϕ1;2,

σ

4π
∇2ϕ1 −U0ðϕ1Þ ¼

σ

4π
∇2ϕ2 −U0ðϕ2Þ ¼ nðϕ1 − ϕ2Þ;

ð15Þ
UðϕÞ ¼ 2iπνðΔϕþ E cosϕÞ: ð16Þ

Assuming that the coupling n is sufficiently strong [22],
we substitute ϕ1;2 ¼ ϕ� χ=2 and expand the equations to
linear order in χ. Next, we exclude χ and obtain a closed
differential equation for ϕ. We will look for a circular
symmetric solution ϕðrÞ. Remarkably, the fourth-order
equation for ϕ can be simplified with the help of a dimen-
sional reduction trick [20,21] down to the second order,

σ

4π

�∂2ϕ

∂r2 −
1

r
∂ϕ
∂r

�
−U0ðϕÞ ¼ 0: ð17Þ

The differential part has the form of the “radial Laplace
operator in zero dimensions.” The transformation leading to
Eq. (17) is enabled due to a hidden supersymmetry of the
problem [23].
Although the nonlinear equation (17) is not analytically

solvable, the fact that the values of ϕ at the origin and at
infinity satisfy U0ðϕ0;∞Þ ¼ 0 suffices to compute the
instanton action. Expanding the action in χ, we perform
the radial integration by using Eq. (17),

Sinst ¼ −
Z

dr
2n

�
σ

4π
∇2ϕ −U0ðϕÞ

�
2

¼ σ

n
½Uðϕ∞Þ − Uðϕ0Þ�

¼ Δτn
h
arccoshðΔ=EÞ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − E2=Δ2

q i
: ð18Þ

This action determines the subgap DOS with exponential
accuracy provided Sinst ≫ 1 (see Fig. 2),

ρ ∝ e−Sinst ∝

(
exp ½− Δτn

3
ð2ϵÞ3=2�; ϵ ¼ 1 − E

Δ ≪ 1;

ðE=ΔÞΔτn ; E ≪ Δ:
ð19Þ

The “near” tail at ðΔτnÞ−2=3 ≪ ϵ ≪ 1 has the form char-
acteristic for the distribution of large eigenvalues of a
random matrix [24]. This effectively 0D result appears in
our problem due to dimensional reduction. The deep
subgap tail at E ≪ Δ is similar to the 2D results of
Ref. [25] for the long-time asymptotics of the current
relaxation due to anomalously localized states.
Summary and outlook.—To summarize, we have dem-

onstrated that randomly distributed vacancies in a 2D chiral
metal strongly modify its critical properties at zero energy.
They reduce the correlation length (12) and increase theDOS
(13) as compared to the conventional chiral metals [5].
Technically, this modification occurs due to an additional
term in the sigma-model action (3c). This term provides
a mass to the phase variable ln detQ and reduces the

balanced, Eq. 13

weak imbalance, Eq. 14

strong imbalance, Eq. 19

E

FIG. 2 (color online). Schematic average DOS in the 2D chiral
metal with vacancies. Black line shows the result of Eq. (13) in
the limit Δ ¼ 0. Weak imbalance results in the linear decay of
DOS at exponentially low energies (14). Strong imbalance leads
to the gap with exponentially small subgap tail (19).
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sigma-model target space UðNÞ ↦ SUðNÞ in the symmetry
classAIII. Similar reductionwill take place in the other chiral
classes, BDI and CII, leading to the models on the SUð2NÞ=
Spð2NÞ and SUðNÞ=OðNÞ manifolds, respectively.
Graphene with vacancies at the Dirac point represents a

class BDI system with σ ∼ 1. While our analysis was
performed for σ ≫ 1, our results of Eqs. (12) and (13) are in
agreement with a numerical study of graphene lattice with
vacancies [26,27].
When the density of vacancies is different in the two

sublattices, nA ≠ nB, the system hosts exact zero modes
with the concentration jnA − nBj. A weak imbalance
depletes the DOS at low energies linearly, Eq. (14), while
a strong imbalance opens a gap in the spectrum with an
exponentially small tail (19) at low energies.
The reduction of the sigma-model symmetry by gen-

eration of a mass in the Uð1Þ sector due to vacancies also
has profound implications for localization properties at the
chiral-symmetry point (E ¼ 0). Indeed, topological vortex
excitations of the U(1) phase ln detQ are responsible for the
localization in chiral metals at sufficiently strong disorder
[6]. Our results suggest that random vacancies disable this
mechanism and thus prevent the localization. This is similar
to classes D and DIII where the localization can only
emerge due to domain walls associated with a discrete O(1)
degree of freedom detQ ¼ �1 [28]. This degree of free-
dom gets frozen by vortex impurities [29], which leads to
disappearance of the localized phase. A detailed study of
this effect as well as of an impact of the electron-electron
interaction (which may be nontrivial in chiral metals [30])
remains a prospect for future work.

We thank F. Evers for sharing numerical data [26] prior
to publication and for discussions. This work was sup-
ported by DFG SPP 1459 and 1666, by GIF, by BMBF, and
by the EU FP7 IRSES InterNoM network.
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