Supplemental Material

I. INVERSION OF THE FLUCTUATION PROPAGATOR

Here we invert the matrix fluctuation propagator defined by the left-hand side of Eq. (7):

Ai(e) - WTZA(E,E’)ZJZ)((S))AI(;;’) = ¢(e). (S1)

Evaluating the derivative of F (') = A(e')/[e"? + A%(¢')]'/?, we get

Al(E) — WTZ)\(g’g’)Fo(g/)AAl((;l)) + WTZ mAl(g/) = ¢(e). (S2)
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Since both A(e’) and A (&') are logarithmically slow functions of €', the second sum can be easily evaluated and we
arrive at

Ae) - wTZA(as’)Fo(s’)AAl(S;) LN TA(T) = 6(e), (53)

where Lg is the fluctuation propagator at zero frequency and momentum in the BCS theory:

7¢(3)A*(T)
T AX(T) e, T =T < Ty
L =) = TE — = 47272 4
0 <T0> ™ - [£2 + A2(T)]3/2 . & rer (S4)

The value of A;(7T}) can be easily obtained from Eq. (S3). In order to do this we multiply it by F(g) and sum over
. Using the SCE (4), we immediately see that the first two terms in Eq. (S3) cancel and we obtain

BT = 3055 7T S R©0(6) (55)

where we use that, according to Eq. (6), A(T.) = A(T).

II. CORRELATION FUNCTION (A;A;) DUE TO MESOSCOPIC FLUCTUATIONS

In this Section we evaluate the zero-momentum correlation function

<A1 (TC)AI (Tc)>q:0
A(T)A(T)

(S6)

due to mesoscopic fluctuations of Fyis and Agis.

Correlation function (FgjsFais)

The correlator of Gorkov functions in the Matsubara representation is calculated with the help of imaginary-time
replica sigma-model following the line of Ref. [S1]. The resulting expression has the form

(Lo (r, r/)]Q

<Fdis(€, I')Fdis (sla I‘,)> =k (5)F0 (5/) (7‘(‘1/)2 ’

(S7)

where v is the 2D one-particle DOS at the Fermi level (per single spin projection), and II is the diffusion operator on
top of the superconducting state:

I = —DV? + &(e) + €(&'), (S8)



where

E(e) = y/e2 + A2(e). (S9)

For the zero Fourier component we get

_ Fo(e)Fo(€) 1

(Fais(&) Fas (=0 = =505 E(e) + €(e)’ (810)
The corresponding contribution to Eq. (S6) has the form
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This expression is typical to fluctuation contributions to ®. Among four energy summations, two are logarithmic

involving large energies, € > T, while the other two come from & ~ T,, where A(e) can be approximated by A(T).
The latter summations introduce the dimensionless function

N () = 1677 _— = 7/ tanh coshd| = 2 T
T, 51§>0 @1@2(@1 + @2) ™ Jo cosh 6 2T 1, T<T.
(S12)
Performing summations over £5 and &4 in Eq. (S11) we get
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1672 DA3(T) 0 T, T, u ;J (e, T.)Fo(e) (S13)
Summation is done with the help of the SCE (4), and we obtain finally
1 T T
PFEF) — 2= \N[=). 14
1672DA(T) " \ T, T. (S14)
Correlation function (§AqisdAais)
Mesoscopic fluctuations of the return probability which determines A(e,e’) = —A2In[1/max(e,&’)7] have been
calculated for the normal state in Ref. [S2]:
6)\(61,62)6)\(63,64) 1 1 1 1
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where €;; = €; + €.
Generalization to the superconducting case is achieved by replacing e — &(g). All four terms in Eq. (S15) equally
contribute to ®, and we get

2 aT)* 1 2 4
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Analogously to Eq. (S11)], summations over e and ¢4 yields N(T/T,), while summations over £; and e3 are converted
to a logarithmic integral:

1 T T e ’
AN — WDA(T)L?J (T) N (T) ( ; OA(C, Ci) cosh Ag (¢ — €) dC) , (S17)

and hence

1 T T
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Correlation function (FgisdAdis)

The cross term is evaluated analogously:

1 T T
PEN = o~ 2( -\ N[ h « — 1]. 1
162 DA(T) O\ T. T, [cosh Ag¢, ] (S19)

Resulting expression for (A;A;)
Adding (S14), (S18) and (S19), we obtain

S TN cosh? oy = —— " g(T
= 167W27DA(T)K(TC> oS Agle = g9(g - gc)A(T)K(T)’ (520)

where we have introduced K (T/T.) = L(T/T.)N(T/T.), used the relation g = 47vD, and employed cosh® A\ (. =
9/(g — gc). With the help of Eq. (S6), one readily obtains Eq. (10) of the main text.

It’s worth noting that Eq. (S20) agrees with our previous results [S2]. Indeed, in the limit 7" — T¢, Eq. (520) can
be simplified with the help of Egs. (S4) and (S12) as
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On the other hand, the same correlator can be obtained from the correlation function of the coefficient « in the
Ginzburg-Landau (GL) expansion [S2]:

({aa))g=0 = 8:5*(;’))T cosh? )\, ¢, (S22)
with the help of the relation
_ {{aa))q=0
(ADATD gm0 = 50D, (523)

where 3 = 7¢(3)v/(872T?) is the nonlinear coefficient in the GL functional. One can easily verify that Eq. (S23)
coincides with Eq. (S21).

III. DENSITY OF THE SUBGAP STATES

Introducing 6 = 7/2 + 1), we rewrite Eq. (12) as

—EV2Y + F(y) = _(m@iismhw7 (S24)
0
where 2 = D/2A, and
Fy) = _AE cosh ¢ + sinh 1) — 7 sinh ¢ cosh 1. (S25)
0

At the minigap (E = E,), cosht, = 7 1/3. For small deviation from the gap, the function F(¢) in the vicinity of
its maximum can be written as

F(3) = Q4 — 4ho) — p(¢ — ho)?, (S26)

where

- By —F 3 ;
Q=V6+/1—7n2/3 720 , p:§n1/3\/1—n2/3. (S27)



Comparison of the linear in 4 terms in the left-hand side of Eq. (S24) defines the relevant length scale

Lp— -2 (S28)
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At the mean-field level, ¥ is real below the gap. Finite DOS corresponds to appearance of a nonzero Im due to a
large negative fluctuation of A(r). Its probability is given by

P o exp <_2fl(()) /§A2(r) ddr> =e 5, (S29)

where we have used that the instanton size, Lg, exceeds the correlation length, &y, of the order parameter fluctuations.
At the quantitative level, the instanton action S can be estimated as follows. To produce a nonzero DOS at £ < E,
the optimal fluctuation of dA(r) should have the magnitude of —(E, — E) and the spacial extent of Lg, which
immediately gives the estimate [S3]

Sa

Azl (Eg - E)Qd/“. (30)

f0) \ E,
To find the numerical coefficient in Eq. (S30), one has to solve the instanton equation. Measuring coordinates in

terms of Lg introduced in Eq. (S28), appropriately rescaling ¥ — v, and replacing sinh in the right-hand side of
Eq. (S24) by its value at Ey, we rewrite Eq. (S24) in a universal dimensionless form:

~V2¢+ ¢ —¢° = h(r), (S31)
where
B Ap§?

Minimization of the functional [ h?(r)d%r leads to the fourth order differential equation for ¢(r):
(=V2+1-2¢)(-V?¢+ ¢ —¢*) =0. (833)

The spherically symmetric optimal fluctuation solving (S33) in d dimensions satisfies the second-order differential
equation [S4]

~Viab+d—¢* =0, (S34)

where V2_, = 8%/0r? — (d — 3)r~'9/0r is the radial part of the Laplace operator in the (d — 2)-dimensional space.
The instanton is characterized by the number

2 4 d=
ag = /thdr = 4/ ¢—2 dir = B /5, 5 (S35)
r 41,  d=2,

where a3 follows from the exact solution ¢s(r) = (3/2) cosh™2(r/2) [S3], while as is obtained by a numerical solution
of Eq. (S34).
Returning to the dimensional variables, we get for the instanton action in the limit n < 1:

2¢d _ 2—-d/4
Sd _ 8aq Aof Eg E . (536)
64/4 £(0) Ey
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leading to Eqgs. (18) and (19).



IV. ROLE OF A FINITE FILM THICKNESS

In films with a finite thickness d < &, there exists a contribution to the depairing parameter 7 in Eq. (13) coming
from large wave vectors (gd >> 1), where diffusion is three-dimensional:

2 [ fla) d e
B =N | Dg2 ( 3 7r2AD / (538)

[here A = A(T) is the temperature-dependent BCS order parameter|. In this region, Coulomb effects are weak and
all complications related with the energy dependence of A and A can be neglected. Equation (8) is then replaced by
a simpler expression written for an arbitrary 3D wave vector:

SA(T,q) = L, (%) 21T Y Fais(e, @), (S39)
¢ e>0

where L,(T/T¢) is the BCS fluctuation propagator at finite momentum:

£)Dg? + 202(T
SNT/T) = 2r TZ e 1q)q++ S @Ea))]' (540)

In the limit g€y > 1, one recovers the known inverse logarithmic decay of the fluctuation propagator [S3]:

1

LT = Dy

qéo > 1. (S41)

With the help of Eq. (S7) the correlation function f(q) = (§AJA)q can be written as

o) =13(z) (TugA>

where v3 = v/d is the 3D DOS at the Fermi level. Integrating over k with the help of the Feynman’s trick we get

1 /TN [ TAN? 1 ! dx
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€1,2>0
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In the limit g€y > 1, only large €19 > T, with €(¢) ~ |¢| are important. Replacing summations by integrations
and using Eq. (S41) we find

1 o(Ty (AN [P deydey [ dz 1 (A
_ L2 =— = ~ . S44
/() 8m3 1 (TC> (V3D> /Tc g1 e Jo [x(1 —2)g® + (e1 +&2)/D]/2 ~ 872q (y3D> (S44)

The obtained 1/q dependence of the correlation function f(g) leads in Eq. (S45) to the logarithmic contribution

from the region | < r < d:
AT) ( 1\ d
ip= —2—) In- S45
713D 874D (l/gD) s (545)

leading to Eq. (17).
For even thicker films with d > &g, the 2D contribution (15) is small and Eq. (S45) with d replaced by &y gives the
leading contribution to the depairing rate.
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