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In disordered superconductors, the local pairing field fluctuates in space, leading to the smearing of the

BCS peak in the density of states and the appearance of the subgap tail states. We analyze the universal

mesoscopic contributions to these effects and show that they are enhanced by the Coulomb repulsion. In

the vicinity of the quantum critical point, where superconductivity is suppressed by the ‘‘fermionic

mechanism,’’ strong smearing of the peak due to mesoscopic fluctuations is predicted.
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The superconductive (s-wave) state is characterized by a
gap� in the quasiparticle spectrum and the coherence peak

(CP) in the density of states (DOS) above the gap, �ðEÞ ¼
�0 ReE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � �2

p
. According to classical results [1,2],

impurity scattering does not affect this picture, as long as
the time-reversal invariance (TRI) is not broken. Yet, a
number of experiments demonstrate considerable suppres-
sion of the CP and the appearance of subgap (E<�) states
with the increase of disorder [3–5]. A mechanism leading
to gap smearing without invoking any TRI breaking was
proposed 40 years ago in the seminal paper [6] (see also
Ref. [7]). It was shown that the effect of a (phenomeno-
logically introduced) short-scale disorder in the Cooper
attraction constant, � ¼ ��þ ��ðrÞ, is formally equivalent
to the one produced by magnetic impurities [8]. Another
mechanism [9] relates smearing of the CP with a finite
inelastic lifetime of quasiparticles [10]; this effect becomes
exponentially weak at low temperatures, T � Tc. Finally,
it has been recently demonstrated that an apparent DOS
smearing seen in tunneling experiments may be due to
electric fluctuations in the environment [11].

In recent years an upsurge of interest in experimental
studies of strongly disordered (nongranular) superconduc-
tors has been seen, evidenced, e.g., by Refs. [12–16]. Two
basic classes of these materials distinguished by the value
of the electron concentration are known (for a review, see
Ref. [17]). Below we will focus on strongly disordered
superconductors with high (typical metallic) electron den-
sity and strong Coulomb interaction [13,15,16], where the
fermionic mechanism of superconductivity suppression by
disorder [18] is operating.

In this Letter we show that mesoscopic conductance fluc-
tuations [19] provide a universal lower bound for the DOS
smearing effects in any disordered superconducting thin
films, effective down to T ¼ 0. For the case of thin films
(thickness d is below the low-temperature coherence length
�0), the strength of this smearing is completely controlled by
the film dimensionless conductance g ¼ 2�@=e2Rh � 1,
and the critical conductance, gc ¼ ln2ð@=Tc0��Þ=2�, for the

fermionicmechanismof superconductivity suppression [18].
HereTc0 is the transition temperature in the clean system (we
put Boltzmann constant kB ¼ 1) and �� ¼ maxf�; �ðd=lÞ2g,
where� is the elastic scattering time and l ¼ vF� is themean
free path.
We find that the average DOS schematically shown in

Fig. 1 is characterized by two energy scales: The width �
measures the broadening of the BCS peak, while �tail de-
termines the exponential decay rate of the subgap DOS,

h�ðEÞi / expf�½ðEg � EÞ=�tail�3=2g. The tail in the aver-

aged DOS is a manifestation of the local gap inhomogeneity
due to randomness in the impurities’ configuration. In the
zero-temperature limit, �tail and � � �tail are given by

�tail

�0

¼
�

0:47

gðg� gcÞ
�
2=3

;
�

�tail

¼
�
ln
�0

�tail

�
2=3

: (1)

The most important feature of the result (1) is a sharp
growth of the DOS broadening in the vicinity of the
quantum critical point, g ¼ gc. The same dimensionless
parameter, �d � 1=gðg� gcÞ, is known to control the
disorder-induced smearing of the thermal transition [20].
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FIG. 1 (color online). Schematic view of the average DOS in a
dirty superconducting film (solid line). Broadening of the BCS
peak (dashed line) is mainly described by the semiclassical
approximation (dotted line), with the full DOS containing a
significant tail of the subgap states.
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Our quantitative analysis is presented below.
Mean-field structure of the superconducting state.—We

start the analysis of the superconducting state at the mean-
field level, working with disorder-averaged quantities and
neglecting spatial fluctuations of the order parameter.
The effect of the Coulomb interaction on the properties of
disordered superconducting films is usually treated in
terms of an energy-dependent Cooper amplitude �ð�Þ, with
� ¼ lnð1=E��Þ being the logarithm of the running energy
scale (hereafter we set @ ¼ 1). In the case of the screened
Coulomb interaction, �ð�Þ obeys the renormalization group
(RG) equation [18]:

d�=d� ¼ �2 � �2
g; �2

g ¼ 1=2�g; (2)

where we neglected the triplet sector contribution and con-
ductance renormalization assuming �=g � 1. Equation (2)
describes a competition between the Cooper instability and
Coulomb suppression of Cooper attraction, with the initial
condition �ð0Þ ¼ �0 at E� ��1� . The RG flow (2) drives
�ð�Þ to infinity at �� ¼ ð2�gÞ ln½ð�0 þ �gÞ=ð�0 � �gÞ�,
which signals the superconducting transition with the criti-
cal temperature Tc ¼ ��1� e��� [18]:

Tc��
@

¼
� ffiffiffi

g
p � ffiffiffiffiffi

gc
p

ffiffiffi
g

p þ ffiffiffiffiffi
gc

p
� ffiffiffiffiffiffiffiffiffi

�g=2
p

: (3)

Another important feature introduced by the Coulomb
interaction is the energy dependence of the pairing potential
~�ð"Þ [20]. The latter is defined through the quasiclassical

Gorkov function in the Matsubara representation, Fð"Þ ¼
~�ð"Þ=½"2 þ ~�2ð"Þ�1=2. The function ~�ð"Þ can be obtained
from the self-consistency equation (SCE)

~�ð"Þ ¼ �T
X
"0
�ð"; "0ÞFð"0Þ; (4)

where " is the fermionic Matsubara energy, and the energy-
dependent Cooper amplitude is given by

�ð"; "0Þ ¼ �0 � �2
g ln½1=maxð"; "0Þ���: (5)

A description based on Eqs. (4) and (5), where all ener-
gies are retained, is an alternative to the successive elimi-
nation of high-energy degrees of freedom by the RG
evolution of �ð�Þ. The logarithmic correction to �0 in
Eq. (5) corresponds to the last term in RG equation (2). At
the same time, the first term in Eq. (2) is automatically taken
into account by the summation over energy in Eq. (4). An
approach based on Eqs. (4) and (5) is equivalent to the RG

in the determination of Tc, but can be used also to find
~�ð"Þ

in the superconducting phase at T < Tc.
Equation (4) generalizes the SCE in the BCS theory. To

find the energy dependence of ~�ð"Þ at large energies, "*Tc,
we rewrite Eq. (4) as a linear integral equation in terms of the
logarithmic variable � , which is readily solved by reducing
to a differential equation owing to a simple form of the
kernel (5). As a result, we arrive at

~�ð"Þ ¼ �ðTÞ½ð"=TcÞ�g þ ð"=TcÞ��g�=2; (6)

valid for " * Tc. Here �ðTÞ is a function of temperature
which shouldbe determined from the full equation (4), where
the region of small energies, "� Tc, becomes important.

Neglecting a slow " dependence of ~�ð"Þ, we conclude that
�ðTÞ is related to Tc as in the standard BCS theory [in
particular, �ð0Þ ¼ 1:76Tc].
According to Eq. (6), high-energy (E � Tc) electrons

experience a larger value of the effective pairing potential
[20]. This effect is most pronounced in the limit of strong
suppression of superconductivity, Tc � Tc0, when the

overall enhancement becomes large: ~�ð��1� Þ � �ðTÞ.
Smearing by inhomogeneities.—The mean-field theory

developed above describes disorder-averaged quantities. In
the presence of a quenched disorder, the order parameter
becomes nonuniform and the sharp BCS peak gets broad-
ened. Analytical description of this effect is complicated
due to the failure of the perturbation theory at E ! �.
Earlier experience [6,21] suggests that the problem can be
conveniently tackled in two steps: (1) First one has to find
the correlation function h�ðrÞ�ðr0Þi. Since this is a ther-
modynamic quantity involving contributions from many
energies, it can be obtained in theMatsubara representation
by a regular perturbation theory. (2) Then behavior of
electrons in the field of a spatially fluctuating �ðrÞ can
be considered independently for each real energy E. This
scheme based on the perturbation theory is applicable
provided that disorder smearing is small.
In dirty superconductors, diffusive motion of electrons is

described by the Usadel equation [22] supplemented by the
SCE (4). Various types of disorder, such as magnetic impu-
rities [8,23] or fluctuating coupling constant [6,21], can be
easily incorporated into the scheme as random fields in the
Usadel equation. The situation with universal mesoscopic
disorder (intrinsic fluctuations of the potential disorder) we
are considering is different: Since the Usadel equation is
already written for the ensemble-averaged quantities, meso-
scopic potential disorder cannot be included there as some
extra fluctuating field. To find the correlation function
h�ðrÞ�ðr0Þi, one has to go beyond the Usadel equation,
consider two replicas of the system and average over soft
diffusive modes [20], similar to calculation of the universal
conductance fluctuations (UCFs) [19].
Mesoscopic fluctuations of the order parameter.—In the

presence of disorder, the SCE (4) contains two sources of
disorder: mesoscopic fluctuations of the coupling constant,
�disð"; "0; rÞ (in its Coulomb part), and mesoscopic fluctua-
tions of the Gorkov function, Fdisð"; rÞ. These quantities
exhibit fluctuations even for a uniform order parameter since
they are governed by diffusive motion of electrons sensitive
to mesoscopic disorder. Due to the SCE, these fluctuations
will result in an inhomogeneous contribution to the order

parameter: ~�ð"; rÞ ¼ ~�ð"Þ þ ~�1ð"; rÞ. The latter, in turn,
will modify F which therefore can be represented in the
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form F ¼ F0 þ ð@F0=@~�Þ~�1 þ Fdis. Substituting this in

the SCE (4) and linearizing we get an equation for ~�1ð"Þ
in the Fourier representation:

~�1ð";qÞ � �T
X
"0
�ð"; "0Þ@F0ð"0;qÞ

@~�ð";qÞ
~�1ð"0;qÞ

¼ �T
X
"0
½�ð"; "0ÞFdisð"0;qÞ þ �disð"; "0;qÞF0ð"0Þ�: (7)

In the 2D case, the main contribution to the CP smearing
comes from large scales [see Eq. (13)], much exceeding the

correlation length rc � �0 �
ffiffiffiffiffiffiffiffiffiffiffiffi
D=Tc

p
for mesoscopic fluctu-

ations of Fdis and �dis. Therefore it suffices to consider
~�1ð"Þ at zero momentum which will be implied below.
Inverting the matrix in the left-hand side of Eq. (7), we

express ~�1ð"Þ in terms of Fdis and �dis. To study the CP

smearing we need the small-energy limit of ~�1ð"Þ with
"� Tc, where the effect of fluctuations is tomodify�ðTÞ !
�ðTÞ þ ��ðTÞ, with ��ðTÞ given by [24]

��ðTÞ ¼ L0

�
T

Tc

� ð2�TÞ2
�ðTÞ

X
"1;"2>0

F0ð"1Þ½�ð"1; "2ÞFdisð"2Þ

þ �disð"1; "2ÞF0ð"2Þ�: (8)

Here L0 is the fluctuation propagator at zero momentum
and frequency in the BCS theory:

L�1
0

�
T

Tc

�
¼ �T

X
"

�2ðTÞ
E3

; E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 þ �2ðTÞ

q
; (9)

with the asymptotic behavior L0 � 4�2T2=7�ð3Þ�2ðTÞ at
T ! Tc, and L0 ¼ 1 at T ¼ 0.

Therefore, smearing of the CP and behavior near the
gap edge are determined by a single number, fð0Þ ¼
h����iq¼0, which can be easily obtained from the corre-

lation functions of Fdis and �dis with the help of Eq. (8).
Since the Coulomb correction to � already contains a
closed loop (return probability), the correlation functions
hFdisFdisi, hFdis�disi and h�dis�disi are given by the one-,
two-, and three-loop diagrams in soft diffusive modes,
respectively. The overall contribution is given by [24]

fð0Þ ¼ �D�ðTÞ
gðg� gcÞK

�
T

Tc

�
; (10)

where KðT=TcÞ ¼ L2
0ðT=TcÞNðT=TcÞ (see Fig. 2), and

N

�
T

Tc

�
¼ 16T2

X
"1;"2>0

�ðTÞ
E1E2ðE1 þE2Þ ; (11)

withN � 14�ð3Þ�ðTÞ=�3T atT ! Tc, andN ¼ 1 atT¼0.
Replacement of 1=g2 by 1=gðg� gcÞ in Eq. (10) is due to

high-energy contributions, Tc < " < ��1� , where ~�ð"Þ is
enhanced according to Eq. (6). In the limit of strong Tc

suppression, g� gc < gc, the leading source of disorder
comes frommesoscopic fluctuations of the return probability
in h�dis�disi. Equation (10) is consistent with our previous

result in the vicinity of Tc [20], generalizing it to arbitrary
temperatures T < Tc.
Mean-field density of states.—The average DOS,

h�ðEÞi ¼ �0 Rehcos�ðE; rÞi, is expressed in terms of the
spectral angle � which satisfies the Usadel equation,
ðD=2Þr2�þ iE sin�þ�ðrÞ cos� ¼ 0, with a random
order parameter, �ðrÞ ¼ �0 þ ��ðrÞ [here �0 � �ðTÞ].
Integrating out short-range degrees of freedom one gets
an equation for the long-range behavior of �ðE; rÞ [6,21]:
D

2
r2�þ iE sin�þ �ðrÞ cos�� �0	 cos� sin� ¼ 0;

(12)

where the depairing strength is expressed in terms of the
correlation function fðqÞ ¼ h����iq as

	 ¼ 2

�0

Z fðqÞ
Dq2

d2q

ð2�Þ2 : (13)

This expression had been originally derived in Ref. [6] for
the 3D geometry. The last term in Eq. (12) coincides with
the depairing term due to magnetic impurities derived by
Abrikosov and Gorkov (AG) [8]. It leads to the broadening
of the CP (shown by the dotted line in Fig. 1), with the hard

gap at EAG
g ¼ ð1� 	2=3Þ3=2�0.

In the marginal 2D case, mapping to the problem of
magnetic impurities should be done with care. Contrary to
the 3D geometry, now the integral in Eq. (13) is logarithmi-
cally divergent at small q. An appropriate cutoff can be
established by retaining the Cooperon mass in Eq. (13):
Dq2 ���! Dq2 þD=L2

E, with D=L2
E ¼ 2ð�iE cos� þ

�0 sin� þ �0	 cos2�Þ. Thus, in the 2D geometry, 	 be-
comes a function of � and E, making the depairing term in
the Usadel equation more complicated than the simple AG
term. However since the dependence of 	 on LE is loga-
rithmically slow, we can evaluate it at the AG solution
replacing � by �AGðEÞ:

LE ¼ D1=2

½24�0ðEg � EÞ�1=4 � �ðTÞ
�

Eg

Eg � E

�
1=4

(14)

(we assume 	 � 1). As a result, the depairing factor
becomes energy-dependent:

0 1
0

1

T Tc

K
1

T
T

c

FIG. 2 (color online). Plot of the function K�1ðT=TcÞ, where
KðtÞ ¼ L2

0ðtÞNðtÞ is defined by Eqs. (9) and (11).
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	ðEÞ ¼ KðT=TcÞ
gðg� gcÞ ln

minðLE; LgÞ
�0

; (15)

where we had to introduce an infrared length scale Lg to

regularize the otherwise divergent 	ðE ! EgÞ. Its appear-
ance is related to the breakdown of the mean-field approxi-
mation in the narrow region jE� Egj & �tail [6], where the

proliferation of instantons generates a finite correlation

length Lg � �ðTÞðEg=�tailÞ1=4. Substituting 	 ¼ 	ðEgÞ
into EAG

g , we obtain for � � �ðTÞ � Eg:

�

�ðTÞ ¼
3

2

�
KðT=TcÞ
4gðg� gcÞ ln

LgðTÞ
�0

�
2=3

; (16)

which in the zero-temperature limit reduces to Eq. (1).
The theory developed above applies to quasi-2D films

with the thickness d � �0. For finite d & �0, there exists a
contribution to 	 coming from short scales (l � r � d)
where electron diffusion is 3D [24]:

	3D ¼ 2�ðTÞ
�2

@D

�
�

RQ

�
2
ln
d

l
� d2

�2ðTÞ
1

g2
ln
d

l
; (17)

where� is the film resistivity,RQ ¼ 2�@=e2, and�ðTÞ is the
temperature-dependent coherence length. Correction (17)
which should be added to Eq. (15) leads to a small increase
of the width �.

Subgap states.—A hard gap in the excitation spectrum
predicted by the AG theory is smeared by disorder leading
to the formation of states at E< Eg. These localized states

are identified as instantons in the nonlinear equation (12)
[6,21,23,25]. In Ref. [6], Lifshitz-type arguments were
used to determine an optimal fluctuation of �ðrÞ in
Eq. (12) giving rise to a finite DOS at E< Eg. On the

contrary, in Ref. [21], Eq. (12) was considered for a uni-
form �ðrÞ ¼ �0, and instantons related with intrinsic non-
linearity of the Usadel equation were analyzed. The results
of Refs. [6,21] are different and represent two asymptotics
of a unique function of Eg � E (a detailed discussion will

be given elsewhere [26]). For small Eg � E, nonlinearity is

weak and the subgap DOS is due to optimal fluctuations of
�ðrÞ [6], whereas the mechanism of Ref. [21] is applicable
only for very large Eg � E, where the DOS is exponen-

tially small.
Generalizing the 3D analysis of Ref. [6] to the 2D case

[24], we find that the DOS decays exponentially in the
subgap region:

h�ðEÞi / expf�½ðEg � EÞ=�tail�3=2g; (18)

�tail

�ðTÞ ¼
�
0:47

KðT=TcÞ
gðg� gcÞ

�
2=3

(19)

[in the d-dimensional space, lnh�ðEÞi / �ðEg � EÞ2�d=4].

At T ¼ 0, Eq. (19) reduces to Eq. (1). Equation (18) is
valid as long as Eg � E> �tail. Note that the instanton

action obtained in Ref. [21] neglecting �ðrÞ fluctuations is
extremely large, S� g, already at Eg � E� �tail. Hence,

h�ðEÞi follows Eq. (18) for all conceivable E< Eg.

Discussion.—Superconducting samples always have
some amount of disorder which leads to smearing of the
BCS density of states. We have considered the case of a
minimal possible disorder—intrinsic randomness in a
homogeneously disordered film responsible for the UCFs
in the normal state. The average DOS sketched in Fig. 1 is
characterized by two energy scales. The shift of the gap
edge �0 ! Eg and related suppression of the CP height

is controlled by the parameter �, so that �maxðEÞ=�0 �
ð�=�Þ1=2. At the same time, the width of the subgap tail is
determined by a different parameter �tail < �. Both � and
�tail are small in a clean system but get enhanced as the film
becomes less conductive approaching the critical point,
g ! gc. Smearing of the DOS structure becomes very
strong at g� gc � 1=gc, where our theory becomes
inapplicable. The CP broadening is temperature dependent
and grows at T ! Tc due to the growth of the function
KðT=TcÞ (see Fig. 2).
Our results for the disorder-induced DOS smearing

should be compared with the smearing due to inelastic
scattering [9]. In a 2D system, the inelastic rate due to
Coulomb interaction is of the order of �ee � T=g at

T�Tc, and gets exponentially suppressed, �ee / e��ðTÞ=T ,
at T � Tc [10]. Therefore our mechanism always domi-
nates at low temperatures. It also always dominates close to

Tc, where KðT=TcÞ / ð1� T=TcÞ�3=2. The general relation
between the rates � and �ee depends on the proximity to the
quantum critical point. Relatively far from it, at g� gc *ffiffiffiffiffi
gc

p
, inelastic scattering is the leading source of the DOS

smearing at intermediate temperatures, T1 & T & T2,
where T1 � �0= ln
 and Tc � T2 � 
�2, with 
 ¼
ðg� gcÞ2=3=g1=3. For films closer to criticality, g� gc &ffiffiffiffiffi
gc

p
, disorder-induced smearing always dominates over the

inelastic smearing.
The developed theory is expected to be most appropriate

for very thin films of amorphous metallic superconductors
(e.g., Mo-Ge, Nb-Si, W-Re, Nb3Ge), where suppression of
Tc by disorder is described by the fermionic mechanism
[18], and Rh 	 1–2 k�.
Finally, we emphasize that the widely used phe-

nomenological Dynes ansatz, �ðEÞ ¼ �0 ReðE� i�Þ=
½ðE� i�Þ2 ��2�1=2 [3] is inapplicable when disorder is
the main source of the broadening. The actual DOS profile
then depends on two energy parameters, � and �tail,
and decays exponentially rather than algebraically at
E< Eg.
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