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Superconductivity in Disordered Thin Films: Giant Mesoscopic Fluctuations
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We discuss the intrinsic inhomogeneities of superconductive properties of uniformly disordered thin
films with a large dimensionless conductance g. It is shown that mesoscopic fluctuations, which usually
contain a small factor 1=g, are crucially enhanced near the critical conductance gcF � 1 where super-
conductivity is destroyed at T � 0 due to Coulomb suppression of the Cooper attraction. This leads to
strong spatial fluctuations of the local transition temperature and thus to the percolative nature of the
thermal superconductive transition.
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Since the very early stages of superconductivity theory it
has been known [1,2] that the superconducting transition
temperature, Tc, is insensitive to the rate ��1 of elastic
impurity scattering; i.e., it does not depend on the parame-
ter �Tc=@. This statement, known as the ‘‘Anderson theo-
rem,’’ is valid provided that both (i) Coulomb interaction
effects and (ii) mesoscopic fluctuations are negligible.
However, in sufficiently disordered metals, close to the
Anderson localization transition, these effects become im-
portant and the Anderson theorem is violated.

In disordered samples, Coulomb repulsion enhanced
because of the diffusive character of electron motion [3]
leads to the suppression of Tc with the increase of disorder
(cf. Ref. [4] for a review). For two-dimensional (2D) thin
films with the dimensionless conductance g �
2�@=e2R� � 1, the first-order perturbative correction
had been calculated in Ref. [5], and the general expression
for Tc�g� was obtained by Finkel’stein [6]. In the leading
order over g�1=2 his result reads
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where Tc0 is the transition temperature in the clean (g!
1) system, and �� � maxf�; ��d=l�2g, with d being the
film thickness and l � vF� being the mean free path.
According to Eq. (1), Tc vanishes at the critical conduc-
tance gcF � ln2�@=Tc0���=�2�� (which is supposed to be
large enough for the theory to be self-consistent).

Finkel’stein’s theory is an extended version of the mean-
field theory of superconductivity which takes into account
that the effective Cooper attraction acquires (due to
Coulomb interaction and slow diffusion) a negative
energy-dependent contribution. Within this (‘‘fermionic’’)
mechanism, the vanishing of Tc is accompanied by the
vanishing of the amplitude of the superconductive order
parameter 	. Another (‘‘bosonic’’) mechanism of Tc sup-
pression [7] is due to phase fluctuations of the order
parameter. This mechanism seems to be adequate mainly
for structurally inhomogeneous superconductors (granular
films of artificial arrays) with well-defined superconduc-
tive grains interconnected by weak links. Below we see,
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however, that phase fluctuations inevitably become rele-
vant for homogeneously disordered films with the conduc-
tance g close to its critical value gcF.

Another phenomenon important for 2D conductors is
known as mesoscopic fluctuations [8] and is due to the
nonlocal interference of electron waves scattering on im-
purities. It was recognized by Spivak and Zhou [9,10] that
similar fluctuations are pertinent also for the Cooper pair-
ing susceptibility, K�r; r0� � hK�r� r0�i � �K�r; r0�,
which enters the BCS self-consistent equation

	�r� �
�
�

Z
K�r; r0�	�r0�dr0; (2)

where � is the dimensionless Cooper coupling constant and
� is the single-particle density of states per spin.
Equation (2) with the exact disorder-dependent kernel
K�r; r0� possesses localized solutions for 	�r� above the
mean-field transition line. They describe droplets of the
superconducting phase that nucleate prior to the transition
of the whole system. Since the relative magnitude of
mesoscopic fluctuations of �K�r; r0� is of the order of
1=g and is small for a good metal, the effect of localized
droplets on the zero-field superconductive transition is
negligible and the transition width is determined by ther-
mal fluctuations. On the contrary, at low temperatures near
the upper critical field Hc2�0�, thermal degrees of freedom
are frozen out and mesoscopic fluctuations are fully re-
sponsible for the width of the field-driven super-
conductor–normal-metal (SN) transition [10,11]. Still,
the relative magnitude of the Hc2�0� shift and of the
transition width due to mesoscopic fluctuations are of the
order of 1=g� 1 as long as Coulomb effects are
neglected.

The goal of the present Letter is to develop a combined
theory of the superconductive transition in 2D disordered
films, which takes into account both Coulomb effects and
mesoscopic fluctuations. Our main result is the expression
for the relative smearing �d � �Tc=Tc of the zero-field
transition due to the formation of localized islands:

�d �
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g�g� gcF�
; (3)
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where ad � 0:4. In the vicinity of Finkel’stein’s critical
point, at g� gcF & 1, the formation of islands dominates
over thermal fluctuations characterized by the Ginzburg
number Gi � ��=8g� [12]. Moreover, in the very close
vicinity of the quantum critical point, at g� gcF &

1=gcF, fluctuations of the ‘‘local transition temperature’’
become large on the absolute scale, �Tc � Tc, and the
superconductive state becomes strongly inhomogeneous
in the absence of any predetermined structural granularity
[9].

We emphasize that mesoscopic fluctuations are minimal
fluctuations that are inevitably present in any disordered
system. In real samples, their effect may be enhanced by
various types of structural inhomogeneities.

Ginzburg-Landau expansion.—We begin with deriving
the Ginzburg-Landau (GL) expansion in the vicinity of the
Finkel’stein transition temperature (1). The GL free energy
for the static order parameter has the form

F �	��
Z �
�j	j2�

�
2
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�
dr� ~F �	�; (4)

where the first term is the disorder-averaged contribution,
and the last term accounts for mesoscopic fluctuations; its
form will be found later. The diagrams for the disorder-
averaged free energy [13] are shown in Fig. 1. Apart from
the standard impurity averaging, Cooperons should be
averaged over fluctuations of the electric field (this is
shown by the gray rectangle). The order parameter always
enters in the combination hK"�r� r0�i	�r0�, where we
introduced the reduced Cooper kernel:

hK"k�r� r0�i � T
X
m

hG"k;"m�r; r
0�G�"k;�"m�r; r

0�i; (5)

withG"k;"m�r; r
0� being the Matsubara exact Green function

which, in the presence of the fluctuating electric field,
depends on two energy arguments. After summation over
energy Eq. (5) gives the (averaged) pairing susceptibility:
hK�r� r0�i � T�"hK"�r� r0�i.

The kernel hK"�r� r0�i obeys the linear equation shown
diagrammatically in Fig. 2. To write it in a compact form
we define the Cooperon screening factor wq�"�:

hK"�q�i �
2��

Dq2 � 2j"j
wq�"�; (6)

which shows how the free metallic Cooperon gets modified
by the fluctuating electric field (D is the diffusion coeffi-
cient). The screening factor satisfies the equation
(a) (b)
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FIG. 1. Diagrams for the GL free energy: (a) j	j2 term;
(b) j	j4 term; its central part is the Hikami box.
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X
n

L"k"nwq�"n�
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where (for thick films with d > l replace � by ��)

L "k"n �
2

g
!�"k"n� ln

1

j"k � "nj�
(8)

is the disorder-enhanced Coulomb interaction vertex [14]
proportional to the return probability, with !�x� being a unit
step function.

Equation (7) looks pretty similar to the equation for the
energy-dependent Cooper vertex �";"0 considered in
Ref. [14]. It can easily be solved with logarithmic accuracy
[14]. Introducing a new variable # � ln�1="��, one finds
for the zero-momentum limit of the screening factor [15]

w�#� � w0�"� � cosh��g#� � tanh��g#T� sinh��g#�; (9)

where #T � ln�1=T��, and �g � 1=
���������
2�g

p
is Finkel’stein’s

fixed point. The function w0�T� decreases from 1 at "�
1=� down to w�#T� � 1= cosh��g#T� at "� T.

The coefficients in the GL free energy (4) are given by

�
�

�
1

�
� �T

X
"

w0�"�
j"j

�
1

��
�

Z #T

0
d#w�#�; (10a)

� �
��DT

2

X
"

w2
0

"2
� �0w

2�#T�; (10b)

� �
��
2

X
"

w4
0�"�

j"j3
� �0w

4�#T�; (10c)

where �0 � 7#�3��=�8�2T2c � and �0 � ��D=�8Tc� are
the standard coefficients for dirty superconductors [13],
and �� is the running Cooper coupling constant at the
energy scale ��1. The Matsubara sums in Eqs. (10b) and
(10c) converge at the thermal scale. Therefore the coeffi-
cients � and � contain the screening factors evaluated at
#T . On the contrary, the coefficient � is determined by all
energies " < 1=�. The integral in Eq. (10a) is given by
��1
g tanh��g#T�, and when solving ��Tc� � 0 one imme-

diately recovers the Finkel’stein expression (1) for Tc.
Taking the derivative near Tc, we find � � ��T=Tc �
1�w2�#T�.

Thus, disregarding mesoscopic fluctuations, we see that
the 	 field always enters the GL expansion in the combi-
nation with the screening factor w�#T� � 1= cosh��g#T�. If
we define ~	 � 	w�#Tc�, then the GL expansion for ~	 will
= +
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FIG. 2. Equation for the Cooperon in the fluctuating electric
field. The Coulomb vertex L is given by Eq. (8). The kernel
hK"k �r� r0�i is obtained after summation over "m.
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FIG. 3. One-loop diagrams for the 4-Cooperon–diffuson col-
lision vertex M"i �q;q

0�. The diagrams (a) and (c) have their
symmetric counterparts.
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acquire the standard form with the coefficients �0 �
��T=Tc � 1�, �0, and �0. As a corollary, the Ginzburg
number appears to be unaffected by the Coulomb repul-
sion: Gi � �=�8g�.

Quasiparticle spectrum.—Incorporating the Coulomb
screening factors wq�"� into the standard Green function
formalism, one finds that a quasiparticle propagating with
the energy " feels an effective pairing potential 	eff�"� �
w�#�	. The gap in the spectrum, Egap, should be found as a
solution to Egap � w�ln�1=Egap���	. Deep in the super-
conducting phase, at Tc � T � Tc, it coincides with ~	.
On the other hand, excited particles with " > Egap see a
larger value of 	eff�"�, and high-energy particles with " *

1=� feel the bare value of 	.
In the regime of the strong Coulomb suppression of

superconductivity, when Tc � Tc0 and w�#Tc� � 1, the
bare 	 significantly exceeds the screened ~	. This enhance-
ment of 	 was irrelevant for the GL expansion since the
sums over Matsubara energies that determined the GL
coefficients converged at the thermal scale. We see below
that this is not the case for mesoscopic fluctuations where
the bare value of 	 comes into play.

Mesoscopic fluctuations of the pairing susceptibility.—
In order to calculate the correlation function of the pairing
susceptibility, one has to draw two diagrams for K�r; r0�
[see Fig. 1(a)] and connect their diffusive modes by impu-
rity lines. In general, the variance h�K�r1; r2��K�r3; r4�i is
a complicated function of ri � rj, decaying at the scale of

the thermal length LT �
��������������������
D=�2�T�

p
. On the other hand,

close to Tc the order parameter varies at the scale of the
coherence length )�T� � LT

��������������������������
Tc=�T � Tc�

p
� LT .

Therefore, in the vicinity of the superconducting transition
the fluctuations of K�r; r0� are effectively short ranged and
characterized by the single number

C �
Z
h�K�r1; r2��K�r3; r4�idr2dr3dr4: (11)

Taking into account all possible correlations between dif-
fusive modes in K�r; r0�, we find

C � T4
X
"i>0

�Y4
i�1

w0�"i�
"i

�
R̂12

q R̂34
q0M"i�q;q

0�; (12)

where R̂ij
q is an operator acting on an arbitrary function

X�q� as

R̂
ij
qX�q� �

�"i"j
2T

X�0� �
1

�

Z dq=�2��2

�Dq2 � "ij�
2 X�q�; (13)

"ij � "i � "j, and M"i�q;q
0� is the 4-Cooperon–diffuson

collision vertex shown in Fig. 3 (with the proper construc-
tion of internal Hikami boxes by drawing additional impu-
rity lines being implied). The internal diffusive modes can
be diffusons or Cooperons. In the vicinity of Hc2�0�,
Fig. 3(b) was considered in Ref. [10], and 3(c) was ana-
lyzed in Ref. [16]. At zero magnetic field the vertex is
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calculated elsewhere [15]:

M"i�q;q
0� �

�Dq2 � "12��Dq02 � "34�
2�D

"14 � "23
"14"23

: (14)

The first term in Eq. (13) refers to the Cooperons in the
ladder (7) shown in Fig. 2, while its second term refers to
the Cooperons or diffusons that are responsible for the
return probability in the vertex L given by Eq. (8). Some
summations over energies in Eq. (12) saturate at the ther-
mal scale, whereas summations associated with the return
probability are logarithmic, extending up to the high-
energy cutoff ��1:
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2
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The second term in the square brackets in Eq. (15) is due to
mesoscopic fluctuations of return probability. Calculating
the sum as an integral over # with the help of Eq. (9), we
find that this term is equal to 1� w0�T�, so that the total
expression in the square brackets in Eq. (15) is equal to 1.
Thus, in the regime of strong Coulomb suppression of
superconductivity, the pairing susceptibility fluctuates
mainly because of mesoscopic fluctuations of return proba-
bility in the vertex (8). Writing C � C0w

4
0�T�, we get

C0 �
7#�3�

8�4DT
cosh2��g#T�: (16)

Superconductor with fluctuating Tc.—Short-range
mesoscopic fluctuations of �K�r1; r2� are equivalent to
local fluctuations of the transition temperature �Tc�r�,
which can be described by the following term in the GL
free energy:

~F �~	� �
Z
�~��r�j~	�r�j2dr; (17)

where h�~��r��~��r0�i � C0��r� r0�. Superconductors
with local fluctuations of Tc were considered previously
within the phenomenological approach by Ioffe and Larkin
[17], where the three-dimensional case was mainly dis-
cussed. Generalizing their results to the 2D case, we find
2-3
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that the relative smearing of the superconductive transition
due to frozen-in mesoscopic fluctuations is given by �d �
C0=�12Tc�0�d�0=dT�� [note that in the 2D case the nu-
merical coefficient in the exponent of Eq. (29) in Ref. [17]
is equal to 11.8; cf. [18] ]. Taking C0 at T � Tc and using
Eq. (1), we obtain a surprisingly simple expression (3) with
ad � 28#�3�=3�3.

The increase of �d near the critical conductance gcF can
be understood in terms of the renormalization of the
Cooper attraction constant �. At low energies, the latter
acquires a negative Coulomb contribution proportional to
the return probability �g�1 ln�1=-��. Mesoscopic fluctua-
tions of g lead then to fluctuations of �, whose relative
effect grows with decreasing �: �d � �Tc=Tc � ��=�2.

Equation (3) predicts that for g� gcF & 1, the disorder-
induced broadening of the transition dominates over the
thermal width: �d > Gi. In such a situation, the macro-
scopic superconductive transition occurs via formation of
small superconductive islands of size LT �

���������������������
D=�2�Tc�

p
surrounded by the normal-metal state. With the tempera-
ture decrease, the density of these islands and the
proximity-induced coupling between them grows until a
percolation-type superconductive transition [17] takes
place. At sufficiently low temperatures, T & Tc�1� �d�,
the superconductive state becomes approximately uniform,
with weak spatial variations in the amplitude of the order
parameter j	j.

Another situation occurs in the closest vicinity of the
critical conductance, g� gcF & 1=gcF: here local fluctua-
tions of Tc are large on the absolute scale, and strong
inhomogeneity of the superconductive order parameter
persists down to T � Tc. As a result, both thermal and
quantum fluctuations of phases of superconductive order
parameters on different superconductive islands are
strongly increased. In other terms, in the close vicinity of
the critical conductance gcF, the bosonic mechanism of
superconductivity suppression becomes relevant.

The inhomogeneous distribution of j	�r�j is known
[19,20] to smear the gap in the excitation spectrum of a
superconductor. We expect this effect to be very strong for
g � gcF.

The result (3) indicates that strong enhancement (in
comparison with the results of Refs. [10,11]) of meso-
scopic fluctuation effects in Hc2 behavior at low tempera-
ture should be expected at g � gcF. This problem needs
special treatment since the correlation length of meso-
scopic fluctuations diverges at T ! 0, and short-range
approximation employed for the determination of C in
Eq. (11) becomes inappropriate [16]. It is quite clear,
however, that long-range features of mesoscopic disorder
at T ! 0 should increase the effective width of the field-
driven T � 0 SN transition in comparison with the width
�d of the zero-field transition driven by temperature. An
extension of the present approach to the magnetic-field-
induced transition near Hc2�0� will be considered
separately.
05700
To conclude, we demonstrated that strong inhomogene-
ities of the superconductive state can be induced by rela-
tively weak ��g�1� mesoscopic fluctuations, which lead to
spatial fluctuations of the effective Cooper attraction con-
stant. As a result, a nominally uniformly disordered film
may appear as a granular one in terms of its superconduc-
tive properties.
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