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Electron-phonon relaxation in a model of a granular film
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We study the electron-phonon relaxation in the model of a granular metal film, where the grains are formed by
regularly arranged potential barriers of arbitrary transparency. The relaxation rate of Debye acoustic phonons is
calculated, taking into account two mechanisms of electron-phonon scattering: the standard Fröhlich interaction
of the lattice deformation with the electron density and the interaction mediated by the displacement of grain
boundaries dragged by the lattice vibration. At the lowest temperatures, the electron-phonon cooling power
follows the power-law temperature dependence typical for clean systems but with the prefactor growing as the
transparency of the grain boundaries decreases.
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I. INTRODUCTION

Electron-phonon cooling significantly reduced at low tem-
peratures has a pronounced impact on the performance
metrics of various nanodevices, such as superconducting sin-
gle photon detectors [1–3], hot electron bolometers [4,5],
quantum phase slip devices [6–8], etc.

Quite generally, the heat flux transferred from electrons to
phonons per unit volume can be written as [9]

P = �
(
T p

el − T p
ph

)
, (1)

where the temperature exponent p is determined by the ef-
fective dimensionality d of the sample and and the degree of
disorder. In the clean case, p = d + 2 (since the phase volume
of thermal phonons ∝ T d , the number of involved electrons
∝ T , and a typically transmitted energy in the collision ∝ T )
[9–12]. Generalization of this result to the case of homo-
geneously disordered metals has been intensively studied in
literature [13–19]. The presence of point-like disorder mod-
ifies the electron-phonon relaxation rate at low temperatures
when qT l � 1, where qT = T/c is the thermal phonon wave
vector, c is the sound velocity, and l is the electron elastic
mean free time. In this regime, as shown by Pippard [13],
motion of impurities dragged by lattice vibrations results in
the suppression of the relaxation rate by the factor of qT l � 1,
reducing the temperature exponent p → p + 1 [14,15]. On the
other hand, if impurities are not completely dragged by the
lattice, the electron-phonon coupling could be enhanced with
the exponent p → p − 1 [20], though such a model can hardly
be justified microscopically. Note, however, that although the
condition qT l � 1 is satisfied for most metals at low tempera-
tures, the heat transfer between electrons and phonons is often
well described by the exponent p = 5 corresponding to the
clean three-dimensional (3D) situation [21].

The integral quantity �T p can be conveniently expressed
in terms of the phonon relaxation rate (ultrasound attenua-
tion rate) τ−1

ph (ω), which under rather general assumptions is
temperature-independent [18], by the relation

�T p =
∫ ∞

0
dω ω νph(ω)τ−1

ph (ω)N (ω, T ), (2)

where N (ω, T ) = 1/(eω/T − 1) is the Bose-Einstein distri-
bution function and νph(ω) = sdω

d−1/(2πc)d is the phonon
density of states in d dimensions (with sd being the area of
the unit sphere). An alternative description widely used in
literature operates with the electron scattering rate on lattice
vibrations, τ−1

e-ph(E , T ), which is a complicated function of the
electron energy and temperature. Equation (1) corresponds
to a power-law dependence τ−1

ph (ω) = αωp−d−1 with the heat
transfer coefficient

� = sd�(p)ζ (p)α/(2πc)d (3)

and the electron scattering rate at the Fermi energy
given by τ−1

e-ph(T ) ≡ τ−1
e-ph(0, T ) = η�T p−2/ν0, where η =

(2 − 23−p)�(p − 2)ζ (p − 2)/�(p)ζ (p) and ν0 is the density
of states (DOS) at the Fermi level [9,22]. Here � and ζ are the
gamma and Riemann zeta functions, respectively.

Recently, electron-phonon interaction has been actively
studied in strongly disordered NbN films [23–25] used in pho-
ton detectors. It was found that for T > 10 K, when phonons
are effectively three-dimensional (3D), the scattering rate is
well described by τ−1

e-ph(T ) = γ T 3 with disorder-independent
parameter γ by an order of magnitude exceeding its value in
a clean system [25]. Such a behavior cannot not described by
existing theories and it was suggested that it is mediated by
the electron-phonon interaction at the crystallite boundaries.

Motivated by these experimental results, we aim at in-
corporating scattering on grain boundaries into the theory of
electron-phonon interaction. For this purpose we will consider
the simplest case of regularly placed granules and calculate
the phonon relaxation rate τ−1

ph (ω) for arbitrary transparency
of boundaries between them.

The paper is organized as follows. In Sec. II, we introduce
the model and obtain the basic ingredients required for calcu-
lating the relaxation rate. Various simplifications arising in the
low-temperature limit are discussed in Sec. III and then used
in Sec. IV to obtain the dependence of τph(ω) on the barrier
transparency, both analytically and numerically, and consider
the effect of inelastic broadening of the electron spectrum. The
results are summarized and discussed in Sec. V.
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II. MODEL AND BASIC RELATIONS

A. Model

Electron-phonon relaxation in a granular medium will be
modelled by the Hamiltonian

H = Hel + Hph + V, (4)

describing the electron (Hel) and phonon (Hph) subsystems,
and the interaction between them (V).

The single-electron Hamiltonian

Hel =
∫

d2r ψ†[p2/2m + U (x) + U (y)]ψ (5)

describes motion in the field of δ-barriers regularly placed
along the x and y axes:

U (x) = κ

m

∑
n

δ(x − na). (6)

The parameter κ, with the dimension of momentum, de-
termines the tunnel transparency of the boundary at normal
incidence with momentum p:

T (p) = p2

p2 + κ
2
. (7)

The period of the square lattice of the barriers (granule size)
is assumed to be much larger than the Fermi wavelength,
a � λF .

The Hamiltonian of acoustic phonons written in terms of
the displacement uα (r) and momentum πα (r) fields has the
form [26]

Hph = ρ

2

∫
d2r

[
π2

α + (
c2

L − c2
T

)
(∂αuα )2 + c2

T (∂αuβ )2], (8)

where ρ is the crystal density and cL,T are the longitudinal
and transverse sound velocity. In the two-dimensional (2D)
case considered, the standard quantization of the Hamiltonian
(8) yields two independent acoustic phonon modes with the
linear dispersion ων (q) = cνq and polarization vectors ε(ν)

pointing, respectively, along and perpendicular to the phonon
propagation direction q.

In the considered model, there are two mechanisms of
the electron-phonon interaction. The first one is the stan-
dard Fröhlich interaction of the local electron density with
the divergence of the longitudinal displacement of the lattice
[27,28]:

V1 = ζEF

∫
d2r ψ†(∂αuα )ψ, (9)

where EF is the Fermi energy and ζ = 2/d is the dimension-
less parameter of the electron-phonon interaction calculated in
the RPA approximation [22,28,29]. The second mechanism is
the displacement of grain boundaries due to lattice vibrations
that amounts to replacing the coordinate rα − na in Eq. (6) by
rα − na − uα (r). In the linear order in the phonon field, the
corresponding electron-phonon interaction reads

V2 = κ

m

∫
d2r ψ†

⎛
⎝∑

n,α

δ′(rα − na)uα (r)

⎞
⎠ψ, (10)

where the index α takes two values: x and y.

FIG. 1. The momentum p vs the quasimomentum k in the ex-
tended zone scheme for the 1D Dirac comb potential, according to
Eq. (12), for κa = 10.

The second type of the electron-phonon interaction, V2,
inevitably arises in disordered metals, where electrons are
subject to an external potential produced by vacancies or
crystalline defects coupled to the lattice and dragged by the
motion of the latter [15–17,19].

B. Electronic states

The chosen microscopic model of electrons in a periodic
granular medium governed by the Hamiltonian (5) allows for
the separation of variables: For each of the axes, the problem
reduces to the well-known one-dimensional (1D) Dirac comb
problem [30]. Its properties relevant for the calculation of the
electron-phonon relaxation rate are summarized below.

Electron motion in a 1D periodic potential is described
by the Bloch quasimomentum k. We will use the extended
zone scheme [31] when the quasimomentum is not limited
to the first Brillouin zone (−π/a, π/a), but takes all real
values. In the coordinate representation, the wave function |k〉
is piecewise smooth, given on the interval xn < x < xn+1 by
the superposition of two plane waves:

〈x|k〉 = Ckeikxn+1/2
∑

σ=±1

sin
(p + σk)a

2
eiσ p(x−xn+1/2 ), (11)

where xn = na is the position of the nth wall, while xn+1/2 cor-
responds to the midpoint between the two walls. The relation
between the momentum p and the quasimomentum k has the
form

cos ka = cos pa + κ

sin pa

p
. (12)

When solving the transcendental equation (12) on p(k) in the
extended zone scheme, p and k must belong to the same Bril-
louin zone, see Fig. 1. The dispersion relation reads E (k) =
p2(k)/2m. For the wave functions normalized to the quasi-
momentum, 〈k|k′〉 = 2πδ(k − k′), the real coefficient Ck in
Eq. (11) reads [here p = p(k)]

1

C2
k

= 1 − cos ka cos pa + κa

(
sin pa

pa

)2

. (13)
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FIG. 2. Electron density of states (in units of ν0 = m/2π ) for the
2D model (5) of regularly placed δ-barriers with κa = 25.

The wave functions of the 2D Hamiltonian (5) are given
by |k〉 = |kx〉|ky〉, with the corresponding energy E (k) =
[p2(kx ) + p2(ky)]/2m.

The spectrum in the 1D Dirac comb potential is organized
in a sequence of bands separated by gaps, with the DOS
possessing van Hove singularities at the gap edges. Each band
is formed by the states with the quasimomentum from the
corresponding Brillouin zone.

In the 2D model considered, the states of a 2D Brillouin
zone (a square of size π/a × π/a in the quasimomentum
space), which will be refereed to as a plaquette, also form a
spectral band with logarithmic van Hove singularities in the
middle of the band and regular behavior at the edges. But now
different spectral bands are allowed to overlap that produces a
rather complicated DOS structure with a large number of van
Hove singularities, see Fig. 2. In the vicinity of a given energy
E the spectrum may be either gapped or gapless depending
on the strength of the δ-function barrier. Which of the two
regimes is realized depends on the value of the dimensionless
parameter

γ = (p/κ)(pa), (14)

where the first factor p/κ is the fraction of finite-DOS regions
for κ � p, while the second factor pa � 1 estimates the
number of plaquettes at an energy E = p2/2m.

The good-metal regime corresponds to strong coupling
between the grains, γ � 1 (right part of Fig. 2). In this case,
at a given energy near EF many bands do contribute to the
DOS, which therefore can be viewed as a constant slightly
perturbed by quasiregularly placed van Hove singularities. It
is this regime we are going to consider below.

In the opposite case of weak coupling, γ � 1 (left part of
Fig. 2), the spectrum becomes gapped and the system may
demonstrate either metallic or insulating properties depending
on the position of the Fermi energy and temperature.

C. Fermi’s golden rule

The basic processes of electron-phonon interaction are (i)
the decay of a phonon with momentum q and polarization ν,
which generates an electron-hole pair with momenta k2 and
k1 [Fig. 3(a)], and (ii) a dual process of phonon emission
[Fig. 3(b)]. The rates of such processes due to the interaction

FIG. 3. The processes of phonon absorption (a) and emission
(b) by an electron-hole pair.

Vi can be found by Fermi’s golden rule:

w
(s)
ν,i (q) = 2π

∫
(dk1)(dk2)|Mν,i|2δ[E2 − E1 − ων (q)]

× (2π )2δ̂(q + k1 − k2)�s(E1, E2). (15)

Here s = out (in) corresponds to the processes of phonon
decay (emission) characterized by different combinations of
the Fermi-Dirac distribution function f (E ): �out(E1, E2) =
f (E1)[1 − f (E2)] and �in(E1, E2) = [1 − f (E1)] f (E2). Ki-
netic coefficients are determined by the difference of out and
in contributions. The phonon relaxation (attenuation of ultra-
sound) rate is given by [9]

wν,i(q) = w
(out)
ν,i (q) − w

(in)
ν,i (q), (16)

which corresponds to �(E1, E2) = f (E1) − f (E2). Averaging
wν,i(q) at the angles, we get τ−1

ph (ω = cνq).

In Eq. (15), δ̂(q) = δ̂(qx )δ̂(qx ), where we introduced a
periodically continued δ function ensuring momentum con-
servation in the presence of umklapp processes,

δ̂(q) =
∑

m

δ(q − 2πm/a), (17)

while Mν,i is the matrix element of the interaction Vi with the
δ function excluded.

D. Matrix elements

Quantizing phonons in the standard way [28], we find

(2π )2δ̂(q + k1 − k2)Mν,i =
∑

α

ε (ν)
α 〈k2|V α

i (r)eiqr|k1〉√
2ρων (q)

.

(18)
The functions V α

i (r) corresponding to the interactions (9) and
(10) have the form

V α
1 = ζEFqα, V α

2 = κ

m

∑
n

δ′(rα − na). (19)

Since the wave functions |k〉 are factorized, to find Mν,i

from Eq. (18), it is sufficient to compute the matrix elements
of 1D operators

�1 = eiqx, �2 = i
∑

n

δ′(x − na)eiqx (20)

between the states (11). A simple calculation gives

〈k2|�i|k1〉 = 2πδ̂(q + k1 − k2)Ck1Ck2 Ji(q; k1, k2), (21)
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where J1(q; k1, k2) reads

J1(q; k1, k2) =
∑

σ,τ=±1

sin
(p1 + σk1)a

2
sin

(p2 + τk2)a

2

× sin[(σ p1 − τ p2 − k1 + k2)a/2]

(σ p1 − τ p2 + q)a/2
, (22)

and J2(q; k1, k2) has the form

aJ2(q; k1, k2) = p1 sin p2a sin k1a − p2 sin p1a sin k2a

+ q sin p1a sin p2a. (23)

In terms of Jα
i = Ji(qα; k1α, k2α ), the matrix elements Mν,i

take the following form:

ML,1 = ζEFq CJx
1 Jy

1√
2ρcLq

, MT,1 = 0, (24a)

Mν,2 = −i(κ/m) C
[
ε (ν)

x Jx
2 Jy

1 + ε (ν)
y Jy

2 Jx
1

]
√

2ρcνq
, (24b)

where C = Ck1xCk1yCk2xCk2y .
Note the phase difference of π/2 between the matrix el-

ements for the interactions V1 and V2. This is the reason
for vanishing of the cross term proportional to M∗

ν,1Mν,2 +
Mν,1M∗

ν,2. Otherwise it would be impossible to separate the
contributions from the vertices V1 and V2, and an analog of
Eq. (15) would have to contain |Mν,1 + Mν,2|2 for the net
relaxation rate.

III. ULTRASOUND ATTENUATION RATE
AT LOW TEMPERATURES

A. Temperature regimes

The main contribution to the energy transfer between elec-
tron and phonon systems is provided by thermal phonons
with frequency ω ∼ T and momentum qT ∼ T/c. Therefore
the physics of electron-phonon relaxation is determined by
the relation between the wavelength of the thermal phonon
q−1

T and the granule size a. At high temperatures, T � c/a,
the interaction actually occurs inside a single granule. In the
extended zone scheme, that means that the quasimomenta
of the electron and the hole, k1 and k2, belong to different,
well-separated Brillouin zones. On the other hand, at low
temperatures,

T � c/a, (25)

the wavelength of the thermal phonon is large, and the el-
ementary act of scattering involves electrons from different
granules. In this regime, k1 and k2 belong to the same
Brillouin zone that considerably simplifies the calculation,
allowing one to neglect the umklapp processes.

B. Ultrasound attenuation rate at low temperatures

To calculate the phonon relaxation rate from the general
formulas (15) and (16) in the limit T � c/a, one should
simplify the matrix elements (24), as well as understand the
kinematics of the process determined by the energy and mo-
mentum conservation laws. In the limit of a small phonon
momentum, q → 0, the electron and hole quasimomenta al-
most coincide, k1 ≈ k2 ≈ k, and we can limit ourselves to

FIG. 4. Dependence of the velocity modulus v(k) on k (obtained
for κa = 20). The velocity clearly vanishes in the corners of the
Brillouin zones (plaquettes). Shown by black is the line �n defined
by Eq. (28) with c = 0.1/ma and the vector n making the angle
3π/4 with the x axis. Dashed orange line is the Fermi level � for
EF = 78/ma2.

the leading asymptotics of the functions C and J: C = C2
kx

C2
ky

,

Jα
1 = C−2

kα
, and Jα

2 = iqαβ(kα )C−2
kα

, where we introduced the
function

β(k) = κ sin2(pa)[1 − sin2(pa)/(pa)2]C4
k . (26)

Then the matrix elements |Mν,i(q, k)|2 in Eqs. (24) simplify
to

|ML,1|2 = (ζEF)2q/2ρcL, (27a)

|ML,2|2 = (κ/m)2[n2
xβ(kx ) + n2

yβ(ky)
]2

q/2ρcL, (27b)

|MT,2|2 = (κ/m)2n2
xn2

y[β(kx ) − β(ky)]2q/2ρcT, (27c)

where n = q/q is the direction of phonon propagation.
Solving the momentum conservation law by writing k1,2 =

k ∓ q/2, we linearize the energy conservation law at small q:
ω(ν)(q) = E (k2) − E (k1) ≈ qv(k), where v(k) = ∂E (k)/∂k
is the electron velocity. It is more convenient to express the
result in terms of the vector n = q/q:

nv(k) = cν . (28)

In the d-dimensional case, Eq. (28) defines a (d − 1)-
dimensional surface �n in the k space, the shape of which
is determined by the dispersion E (k), see Fig. 4. For an
isotropic parabolic spectrum, �n is a hyperplane orthogonal
to the vector n. The main contribution to the phonon lifetime
at low temperatures is determined by the intersection of the
surface �n with the Fermi surface �.

In the 2D case under consideration, the curves �n and �

can intersect at some set of points, with the number of them
depending on the phonon propagation direction n. Consider
the contribution of such an intersection, say, occurred at k0, to
the phonon decay rate. Let us parametrize the deviation from
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this point as

k = k0 + kss + kt t, (29)

with the unit vectors s and t being tangent and perpendicular
to the curve �n, respectively:

t = |∂k(nv)|−1 ∂k(nv), st = 0. (30)

Calculation of the contribution from the vicinity of the
point k0 to the phonon relaxation rate via Eqs. (15) and
(16) reduces to taking a 2D integral over dksdkt . The trans-
verse momentum kt is pinned to zero by the delta-function
term δ(qkt |∂k(nv)|). In calculating the integral over the
longitudinal momentum ks, we switch to integration over
dE = (vs)dks, which gives for �(E1, E2) = f (E1) − f (E2)
the temperature-independent factor ων . As a result, we obtain
for the contribution of the vicinity of k0:

wν,i(q, k0) = cν |Mν,i(q, k0)|2
2π |[v, ∂k(nv)]| , (31)

where v in the denominator is also taken in k = k0.
To obtain the low-temperatures relaxation rate, one should

determine all k0 points and sum Eq. (31) over them:

wν,i(q) =
∑

k0

wν,i(q, k0). (32)

C. Averaging over angles

The anisotropy of the considered model manifested in a
complex structure of the Fermi surface � (see Figs. 2 and 4)
makes the relaxation rate wν,i(q) dependent not only on the
absolute value of the phonon momentum q but on its direction
n as well. Since the net rate of the electron-phonon heat flux
involves integration over all directions, we will consider here
the angle-averaged quantity

wν,i(q) = 〈wν,i(qn)〉n. (33)

When the vector n is rotated, the point k0 moves along the
Fermi line. Therefore averaging over n reduces to a properly
weighted integration along the Fermi surface. To determine
the appropriate measure, we take the derivative of Eq. (28):

dn v + n(∂v/∂kl )dkl = 0, (34)

with kl being the coordinate along the Fermi line. Writing
dn = [ẑ, n]dθ , where θ is the angle the vector n makes with
the x axis, and ẑ is a unit vector orthogonal to the plane, we
transform the first term in Eq. (34) as dn v = |[n, v]|dθ =√

v2 − c2
ν dθ . The scalar product in the second term, as one

can readily see, is n(∂v/∂kl ) = |[v, ∂k(nv)]|/v. Hence, we
find dθ/dkl = |[v, ∂k(nv)]|/v√

v2 − c2
ν .

Now we are in a position to average Eq. (31), that is, to
integrate over dθ/2π . Switching to integration over dkl we
see that the factor of |[v, ∂k(nv)]| in dθ/dkl cancels the same
factor in the denominator of Eq. (31), and we obtain for the
angle-averaged relaxation rate:

wν,i(q) = cν

2π2

∫
FL

dkl |Mν,i(qn(k), k)|2
v(k)

√
v2(k) − c2

ν

, (35)

where the integral is evaluated along the Fermi line, and the
vector n(k) is one of the two solutions of Eq. (28) for a given

k [the second solution gives the same contribution that has
already been taken into account in the prefactor of Eq. (35)].
Regions of Fermi surface with v(k) < cν , where the decay
process is prohibited by the conservation laws, should be
excluded from the integral (35).

D. Averaging over the Fermi energy

The angle-averaged relaxation rate defined by Eq. (35) is a
rather complicated function of the Fermi energy, qualitatively
resembling the DOS dependence on EF (see discussion in
Sec. II B). In the good-metal regime realized at γ � 1 [see
Eq. (14)], it contains a large smooth background and a small
oscillating component due to quasiregularly placed van Hove
singularities, as shown in the right part of Fig. 2. These sin-
gularities arise due to periodicity of the model and will be
smeared or completely destroyed by disorder or irregularity
inevitably present in real samples.

To get rid of the (small) oscillating component, we aver-
age the angle-averaged relaxation rate wν,i(q) over the Fermi
level:

〈wν,i(q)〉EF =
∫ EF+�EF/2

EF−�EF/2

dEF

�EF
wν,i(q). (36)

The width of the distribution �EF is chosen such that
πvF/a � �EF � EF, where the first condition means that the
width of the averaging area is large enough to include many
plaquettes (see Fig. 4).

The main technical advantage of the EF-averaging proce-
dure is that it converts integration over the Fermi line � in
Eq. (35) into 2D integration over k through the relation dEF =
v dk⊥, where k⊥ is the component of the quasimomentum per-
pendicular to �. Under the above conditions, the integration
region is close to the ring with the radii p± = pF ± �EF/2vF0

containing approximately (2ma2/π )�EF plaquettes of size
π/a × π/a. The resulting expression for the ultrasonic atten-
uation rate τ−1

ph (ν,i)(ω) = 〈wν,i(q)〉EF (with ω = cνq) reads

τ−1
ph (ν,i)(ω) = mcν

π

〈 |Mν,i(qn(k), k)|2√
v2(k) − c2

ν

〉
�,EF

, (37)

where the mean includes integration over a plaquette,

〈F (k)〉� =
∫
� d2k

(π/a)2
F (k), (38)

with subsequent averaging over many plaquettes near the
Fermi level.

IV. DEPENDENCE ON THE BARRIER TRANSPARENCY

In general, the low-temperature average relaxation rate of
a phonon with polarization ν due to the interaction Vi given
by Eq. (37) can be represented as

τ−1
ph (ν,i)(ω) = λ

cL

vF0

cL

cν

ω fν,i(κ/pF), (39)

where vF0 = pF/m and we introduced a parameter

λ = mp2
F

8πρ

(
vF0

cL

)2

∼ m

Mion

(
vF0

cL

)2

∼ 1, (40)
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with the last estimate following from the Bohm-Staver rela-
tion [29].

The behavior of the dimensionless functions fν,i(κ/pF) is
discussed below.

A. Low barriers

In the absence of barriers (κ = 0), there is only the
Fröhlich interaction with longitudinal phonons, leading to a
standard relaxation rate in the 2D geometry:

τ−1
ph (L,1)(ω) = λζ 2 cL

vF0
ω. (41)

Written in the form of Eq. (41), the 2D relaxation rate is
analogous to its three-dimensional (3D) counterpart [32]:
both are linear in ω and small in the ratio c/vF0 that makes
phonons well-defined quasiparticles. In terms of the function
fL,1(κ/pF) introduced in Eq. (39), the above result means
fL,1(0) = ζ 2.

Quite counterintuitively, scattering on vibrations of grain
boundaries arises in the first—rather than second—order in
the barrier height. This is a consequence of a strong modifica-
tion of the 1D electron dispersion, which in the limit κ � pF

can be approximated by

v(k) ≈ k

m

|δk|√
δk2 + α2

, (42)

where δk = k − πn/a is a distance to the nearest edge of
the Brillouin zone (n � 1), and α = κ/ka � π/a. Similarly,
β(k) ≈ (κ/a2)/(δk2 + α2). Velocity suppression at the edges
of the Brillouin zones is an interference effect due to the
ideal periodicity of the considered structure. Those narrow
edges of width α ∝ κ make the main contribution to plaquette
averaging in Eq. (37) in the case of interaction with vibrations
of grain boundaries (i = 2), leading to nonanalytic behavior
on κ

2.
After some algebra we obtain for the leading asymptotics

at x � 1:

fL,1 = ζ 2, fL,2 = 3x/2, fT,2 = x/2. (43)

B. Tunneling limit

The limit of high intergrain barriers, κ � pF, can also be
treated analytically. Here, the solution of Eq. (12) describ-
ing a 1D motion in the Dirac-comb potential has the form
pa ≈ π�ka/π�{1 + [(−1)�ka/π� cos(ka) − 1]/κa}, where �·�
stands for rounding up. For the majority of plaquettes,
ka � 1, and the leading contribution to the velocity v =
(p/m)∂ p/∂k comes from the derivatives of cosine:

v(k) ≈ (k2/mκ) |sin(ka)|. (44)

The function β(k) defined in Eq. (26) takes the form β(k) ≈
k2/κ.

We will also assume that the barrier height is limited by
the condition that the Fermi velocity is still much greater
than the sound speed, v(pF) � c. That allows one to neglect
cν in Eq. (28), making n(k) orthogonal to v(k), and in the
denominator of Eq. (37).

When calculating the integral over a single plaquette in
Eqs. (37) and (38), only the velocity v(k) and hence n(k)

significantly depend on the position of k within the plaquette
via the factors sin φα ≡ sin(kαa). Other types of k dependen-
cies are slow and can be neglected, say, by taking k in the
center of the plaquette. Then averaging over the plaquette
amounts to integrating over φx and φy, while the remaining av-
eraging over many plaquettes near EF is done by fixing k = pF

and averaging over the direction l = k/k = (cos θ, sin θ ) of
the vector k. Taking the matrix elements from Eqs. (27), we
obtain after some algebra

fν,i(x) = x
∫ π

0

dθ

π

∫ π

0

dφx

π

∫ π

0

dφy

π
ϒν,i(θ, φx, φy), (45)

where

ϒL,1(x) = ζ 2

(
l4
x sin2φx + l4

y sin2φy
)1/2 , (46a)

ϒL,2(x) = 4l4
x l4

y

(
l2
x sin2φx + l2

y sin2φy
)2

(
l4
x sin2φx + l4

y sin2φy
)5/2 , (46b)

ϒT,2(x) = 4l4
x l4

y

(
l2
x − l2

y

)2
sin2φx sin2φy(

l4
x sin2φx + l4

y sin2φy
)5/2 . (46c)

Numerically calculating the integrals, we find the leading
asymptotic for x � 1:

fL,1 = 3.29 ζ 2x, fL,2 = 2.00 x, fT,2 = 0.47 x. (47)

The low-temperature tunneling-limit results given by
Eq. (47) have a number of pronounced features. Firstly, the
phonon relaxation rate does not depend on the size of the
granules a. Secondly, since ζ ∼ 1, the contribution from
the displacement of grain boundaries is comparable to that
due to the standard Fröhlich’s mechanism. Thirdly, longitu-
dinal phonons are by the factor of four more efficient than
transverse phonons for the relaxation induced by boundaries
vibrations.

Equations (39) and (47) predict a linear growth of τ−1
ph (ω)

with an increase in the barrier height κ that is a consequence
of a proportional decrease of the electron velocity in the tun-
neling regime. This is an intermediate asymptotics obtained
under two constraints: (i) γ � 1 [see Eq. (14)] and (ii) v � c.
The former condition implies that despite T (pF) � 1 we are
still in the regime of a good metal and the approximations
used are justified. The latter condition means that electron-
phonon coupling is weak, Migdal’s theorem is applicable, and
phonons are well-defined quasiparticles, with the attenuation
rate τ−1

ph (ω) being much smaller than ω.

C. Arbitrary boundary transparency

At an arbitrary ratio of κ/pF, the ultrasound attenuation
rate given by Eq. (37) should be obtained numerically. The re-
sult expressed in terms of the functions fν,i(κ/pF) introduced
in Eq. (39) is presented in Fig. 5. Simulations are performed
at pFa = 100, and we used the RPA value of ζ = 1 for the
Fröhlich interaction constant in 2D. The graphs demonstrate
a crossover from the case of transparent boundaries [Eq. (43)]
to the tunneling limit [Eq. (47)]. The curves L2 and T2 de-
scribing electron-phonon interaction due to vibration of grain
boundaries look almost like straight lines that is artifact of
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FIG. 5. Functions fν,i(κ/pF), which describe the ultrasound at-
tenuation rate according to Eq. (39), vs the dimensionless barrier
height κ/pF (the Fröhlich interaction constant ζ = 1).

numerical closeness of the respective coefficients in the small-
and large-x asymptotics.

D. Effect of the electron spectrum broadening

In our calculation of the heat transfer rate, we have ne-
glected the effects of inelastic scattering on the electron
spectrum. Such a relaxation with the rate τ−1

in would smear
the delta function representing the energy conservation in
Fermi’s golden rule (15) into the corresponding Lorentzian.
As a result, the line �n defined by Eq. (28) will acquire a finite
width δkt ∼ (τinq|∂k(nv)|)−1, with q ∼ T/c being a typical
(thermal) phonon momentum. Roughly speaking, this broad-
ening can be neglected provided it is smaller than the size of
the plaquette, π/a. However, δkt is sensitive to the position of
the point k0, where the line �n and the Fermi line � intersect.
At the same time, even if δkt becomes large on a part of
the line �n, which does not make a significant contribution
to the electron-phonon scattering rate, that will not change
our results for τ−1

ph (ω). To take this into account, we evaluate
the average δkt weighted with μ(k) = |M(qn(k), k)|2/v(k),
the factor which determines the average phonon decay rate
according to Eq. (37) (we assume v � c). As a result, the
condition of neglecting the interaction-induced broadening of
the electronic spectrum is formulated as

τ−1
in � T

ca
〈|∂k[nv(k)]|−1〉−1, (48)

where the average is defined as

〈X (k)〉 = 〈X (k)μ(k)〉�,EF

〈μ(k)〉�,EF

. (49)

In the limit of vanishing c, the vectors n and v are orthogonal
at the point k0. Then calculating the derivative and taking it at
k = k0, we get

|∂k[nv(k)]| = v−1
√

v2
y (∂vx/∂kx )2 + v2

x (∂vy/∂ky)2. (50)

To evaluate the effect of inelastic broadening, we focus on
the Fröhlich interaction with longitudinal phonons. In the tun-

neling limit, κ � pF, the velocity is given by Eq. (44) and the
average 〈|∂k[nv(k)]|−1〉 is determined by the whole plaquette.
Then a simple estimate yields 〈|∂k[nv(k)]|−1〉 ∼ mκ/p2

Fa. In
the low-barrier limit, κ � pF, a plaquette is organized into a
central part with the free velocity v = k/m and a small region
of width α = κ/pFa � π/a near the edges of the Brillouin
zones, where the velocity is suppressed due to interference,
see Eq. (42). In the latter region, the derivative |∂k[nv(k)]|
is large and its contribution to the average 〈|∂k[nv(k)]|−1〉
can be shown to be negligible. Hence the average is de-
termined by the central part of the plaquette, leading to
〈|∂k[nv(k)]|−1〉 ∼ m. With increasing κ, the area of the cen-
tral part shrinks and it disappears at κ ∼ pF. Summarizing the
above results, we may write the following rough interpolation
formula:

〈|∂k[nv(k)]|−1〉 ∼ m(e−x + x/pFa) (51)

qualitatively valid for all x = κ/pF.
Assuming electron-phonon scattering as the main source

of electron relaxation and using Eq. (3), we get τ−1
in ∼

(τ−1
ph /ω)T 2/mc2. Employing now Eq. (39), we see that the

inequality (50) is well satisfied in the low-temperature limit
considered [see Eq. (25)] both for low and high barriers. In
the limit of κ/pF � 1, it translates into Ta/vF � 1 guaran-
teed by c � vF0. In the limit of κ/pF � 1, it imposes the
constraint T x2/pFvF0 � 1 satisfied since v � c and γ � 1
(see Sec. IV B). Electron-electron interaction with the rate
τ−1

ee ∼ T 2/EF in the clean limit is even less important.
Hence, inelastic broadening of the electron spectrum does

not modify our results for the electron-phonon relaxation rate
in the low-temperature limit [Eq. (25)].

V. CONCLUSION

We have studied the electron-phonon interaction in a model
of a regular granular medium, with the granules formed by
periodically placed δ-functional potential barriers. The prob-
lem is solved in the two-dimensional geometry under the
assumption of ballistic electron motion inside the granules.
An essential element of the theory is the nonperturbative
account of potential barriers, with a considerable modifica-
tion of the electronic states compared to plane waves in the
clean case. Phonons are considered in the standard Debye
model, assuming a continuous description in terms of acoustic
longitudinal and transverse modes. Both the usual Fröhlich’s
electron-phonon interaction and the interaction caused by the
displacement of grain boundaries dragged by the lattice are
taken into account. The proposed model is an oversimpli-
fied description of real disordered granular structures, where
neither the momentum nor the quasi-momentum is a good
quantum number.

The main result of the work is Eq. (39) with the obtained
functions fν,i(κ/pF) describing the ultrasound attenuation
rate in the low-temperature limit, T � c/a. It has a pretty
universal form independent of the period of the granular
structure:

τ−1
ph (ω) ∼ (c/v)ω, (52)

where v is the typical electron velocity at the Fermi surface
determined by the barriers transparency: v ∼ vF0 = pF/m for
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κ � pF, and v ∼ (pF/κ)vF0 ∼ EF/κ � vF0 for κ � pF. The
main qualitative effect is the growth of τ−1

ph (ω) with the
decrease in the intergrain transparency, which is a conse-
quence of the slowing down of electron transport between
granules in the tunneling limit.

Independence of Eq. (52) on the granule size a suggests
that it also holds for a similar three-dimensional model of
regularly arranged granules. Then the linear frequency de-
pendence τ−1

ph (ω) results in the heat transfer rate (1) with the
usual clean exponent p = d + 2. Such a behavior, with the
prefactor exceeding the clean-limit value, qualitatively agrees
with the experimental results reported for polycrystalline NbN
films [25].

Our analysis is applicable in an experimentally relevant
regime of a good metal, when the DOS, though exhibiting a
number of van Hove singularities, is nearly constant around
EF. This situation is realized provided (pF/κ)(pFa) � 1. Un-
der this condition it is possible to perform energy averaging
and get rid of a quasi-regular oscillating energy dependence.

The same condition justifies the use of the standard Fröhlich
Hamiltonian obtained for a constant DOS.

In our calculation of the heat transfer rate, we have ne-
glected the effects of inelastic scattering on the electron
spectrum. This approximation is justified within the range of
applicability of the developed theory.

The peculiarity of the considered model is the periodicity
of the grain structure, which leads to the quasimomentum con-
servation and the absence of diffusion. In real materials, grain
boundaries are placed irregularly, resulting, even for ballistic
motion inside the granules, in diffusive electron propagation
on large scales. The description of the electron-phonon in-
teraction in disordered granular metals remains a challenging
open question requiring further study.
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