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Anderson localization at the boundary of a two-dimensional topological superconductor
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A one-dimensional boundary of a two-dimensional topological superconductor can host a number of topo-
logically protected chiral modes. Combining two topological superconductors with different topological indices,
it is possible to achieve a situation when only a given number of channels (m) are topologically protected,
while others are not and therefore are subject to Anderson localization in the presence of disorder. We study
transport properties of such quasi-one-dimensional quantum wires with broken time-reversal and spin-rotational
symmetries (class D) and calculate the average conductance, its variance and the third cumulant, as well as the
average shot noise power. The results are obtained for arbitrary wire length, tracing a crossover from the diffusive
Drude regime to the regime of strong localization where only m protected channels conduct. Our approach is
based on the nonperturbative treatment of the nonlinear supersymmetric sigma model of symmetry class D with
two replicas developed in our recent publication [D. S. Antonenko et al., Phys. Rev. B 102, 195152 (2020)]. The
presence of topologically protected modes results in the appearance of a topological Wess-Zumino-Witten term
in the sigma-model action, which leads to an additional subsidiary series of eigenstates of the transfer-matrix
Hamiltonian. The developed formalism can be applied to study the interplay of Anderson localization and
topological protection in quantum wires of other symmetry classes.
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I. INTRODUCTION

Quantum localization is a fundamental phenomenon first
introduced in the seminal paper by Anderson [1] over 60 years
ago. Since then numerous types and forms of localization
effects have been identified [2] ranging from the quantum
Hall effect [3] along with other topological insulators and
superconductors [4] to many-body localization physics of in-
teracting systems [5]. It is now a common knowledge that
disorder can dramatically change the nature of quasiparticle
wavefunctions leading to exponential suppression of trans-
port due to quantum interference. These effects are especially
pronounced in low-dimensional systems, where quasiparticles
have less volume to avoid impurity scattering. In particu-
lar, it has been argued by a general scaling analysis that
localization is unavoidable in one-dimensional systems [6].
However, this statement in its general form is undermined
by recent developments in the physics of topological systems
[4]. It was demonstrated that one-dimensional conductors of
certain symmetry can host topologically protected modes that
evade localization as long as the symmetry is preserved in
the presence of disorder [7–9]. Such topologically protected
modes can coexist with usual unprotected modes, when only
the latter are subject to localization [10]. In the present paper,
we consider a particular model of a superconductor with both
protected and unprotected conducting channels and study var-
ious transport characteristics in this mixed arrangement for a
broad range of system lengths.

We study transport properties of the one-dimensional (1D)
boundary states of a two-dimensional (2D) topological super-
conductor [11,12] of symmetry class D (broken time-reversal
and spin-rotational symmetries). According to the general
classification of topological insulators and superconductors
[13,14], in this symmetry class 2D bulk is characterized by a Z
topological index. Due to the bulk-boundary correspondence
[15], the same index provides the number of topologically
protected chiral edge states circulating around the bound-
ary of the system. We consider a general setup with both
protected and unprotected channels, which can be realized
in a junction of two such 2D topological superconductors
with different values of their topological indexes as shown in
Fig. 1. This difference induces an imbalance between right-
and left-propagating channels at the interface between super-
conductors thus leading to the coexistence of protected and
unprotected modes [10].

Probing quasiparticle edge transport is a challenging task
in a topological superconductor since electrical transport mea-
surements are compromised by the shunting effect of the
superconducting bulk. Spin of edge excitations is also not
conserved due to the lack of spin-rotational symmetry making
their spin conductance an ill-defined quantity. The only con-
served physical property of the edge modes is their energy,
hence it is only the thermal conductance that can reliably
quantify edge transport. This is why topological effects in the
superconductors of class D were dubbed as thermal quantum
Hall effect (TQHE) [16]. We will characterize the edge modes

2469-9950/2023/107(7)/075417(19) 075417-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2990-7258
https://orcid.org/0000-0002-3572-475X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.075417&domain=pdf&date_stamp=2023-02-13
https://doi.org/10.1103/PhysRevB.102.195152
https://doi.org/10.1103/PhysRevB.107.075417


DANIIL S. ANTONENKO et al. PHYSICAL REVIEW B 107, 075417 (2023)

FIG. 1. Junction of two 2D topological superconductors as a
possible experimental implementation of a quasi-1D system possess-
ing |nR − nL| protected modes and min{nL, nR} unprotected modes
at the interface. Here nL and nR denote topological indexes of left
and right superconductors, correspondingly. Terminals for transport
measurements are shown by gray rectangles.

by the value of their thermal conductance GT and introduce a
corresponding dimensionless conductance g = GT /G0, where
G0 = πk2

BT/6h̄ is the quantum of thermal conductance [17].
To simplify the analysis, we will limit our consideration to the
case of low temperatures and hence neglect possible inelastic
scattering.

One particular way to controllably create a quasi-1D sys-
tem with both protected and unprotected modes is bringing
into contact two 2D topological superconductors with differ-
ent topological indexes nL and nR as shown in Fig. 1. In this
way, we obtain unequal numbers of left- and right-propagating
modes at the interface. The difference nR − nL gives the num-
ber of topologically protected modes that evade localization
[10]. A similar setup was implemented experimentally for
the quantum Hall physics (i.e., for a unitary symmetry class)
in a 2D electron gas, located at a surface of a crystal with
different filling factors on adjacent faces [18–21]. In our case
of a topological superconductor, the topological classification
and the geometry of protected edge states is the same.

In the setup of Fig. 1, the total conductance does not
depend on the direction of the current between the termi-
nals (denoted by gray rectangles). However, the current is
distributed differently between the inner interface and outer
edges depending on the overall current direction. Assume for a
moment nL > nR. Then at the interface there are m = nL − nR

topologically protected modes propagating downwards. When
a current flows from the upper to the lower terminal, it is car-
ried by these modes together with nR modes at the rightmost
boundary. In total there are nL protected modes and nR un-
protected channels carrying this current. In the opposite case
when the current flows upwards it is carried by nL protected
modes on the leftmost edge of the system together with nR

unprotected channels at the interface in the middle. In the
opposite case nL < nR the argument is similar. Hence there are
always max{nL, nR} protected and min{nL, nR} unprotected
channels irrespective of the current direction. All unprotected
modes are at the interface between superconductors while
the number of protected modes at the same interface is
m = |nL − nR|.

To simplify the analysis we find it convenient to consider
direction-averaged dimensionless conductance of the inter-
face g. We decompose the overall conductance gtot into the
contributions of outer edges and inner interface with both
quantities averaged over the two possible directions of the

current [10],

gtot = nL + nR

2
+ g. (1)

Here the first term corresponds to the direction-averaged con-
tribution of the outer edges of the junction (see Fig. 1). In
the following we focus only on the second term g. We will
study statistical properties of the interface conductance g, in
particular, its averaged value 〈g〉, variance var g and the third
cumulant 〈〈g3〉〉. Also, we will compute the shot noise power
of quasiparticles, which is also due to the channels at the
interface.

The case without protected modes (m = 0, corresponding
to nL = nR in the aforementioned setup) is special and was ex-
tensively studied previously [8,22,23]. It can be implemented
in a superconducting wire with broken time-reversal and
spin-rotational symmetries and does not require an adjacent
two-dimensional gapped bulk superconductor. Such systems
have attracted a great interest in recent years both theoretically
and experimentally since they are very promising candidates
to realize Majorana bound states [24–26]. Gapped phases of
such disordered wires are characterised by a one-dimensional
Z2 topological index q, which takes only two possible values
0 or 1. This index distinguishes a trivial gapped state q = 0
and a topological state q = 1 that carries a pair of zero-energy
Majorana states at the ends of the wire. Critical state between
these two gapped phases is not fully localized by disorder
[7–9,27]. Instead it is characterized by subohmic scaling of
the average conductance with the wire length 〈g〉 ∝ 1/

√
L.

In our previous publication [23], we computed conduc-
tance variance and other higher transport moments for a
disordered Majorana wire with many conducting channels
fine tuned to the critical regime. In the present paper we
extend our research taking into account possible topologically
protected modes, which can appear only if the studied 1D
system is realized at an edge of a two-dimensional topological
superconductor. Since such an edge model is gapless, the Z2

topological classification of Majorana wires does not apply in
this case.

We use the formalism of the supersymmetric nonlinear
sigma model [28], which is applicable to disordered systems
with the diffusive regime at moderately short lengths. In a 1D
geometry this implies a large number of conducting modes
nL,R � 1.

While the symmetry class of the sigma model is deter-
mined by the symmetry of the underlying system, the rank of
the model depends on the particular averaged quantity to be
studied. The simplest quantities such as the average density of
states or conductance involve at most two Green’s functions
(retarded and advanced). They can be calculated within the
minimal sigma model of rank n = 1. Such analysis for a
disordered 1D system of the symmetry class D was carried
out both in the topologically trivial (m = 0) [8,29–31] and
topologically nontrivial (m �= 0) [10,32] settings. In the latter
case, inclusion of the channel imbalance results in the appear-
ance of a topological Wess-Zumino-Witten (WZW) term in
the sigma-model action, with the coefficient proportional to
m = |nL − nR|.

The minimal one-replica sigma model of class D allows to
calculate only the average conductance 〈g〉. Higher moments
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FIG. 2. Average conductance 〈g〉 in the presence of m protected
topological modes as a function of the wire length L. Dashed lines
show the leading short- and long-wire asymptotics. Localization
length of unprotected modes Lloc(m) decreases with the increase of
m, following Eq. (2).

of transport, such as conductance variance or shot noise power
require averaging of more than two Green’s functions. Hence
the sigma model with at least n = 2 replicas is required. Such
a model was developed in our earlier paper [23] for the topo-
logically trivial wires with m = 0. In the present paper we
generalize this model to include possible topologically pro-
tected modes in the case m �= 0. Using the generalized model
we will calculate the first three moments of the conductance
as well as the average Fano factor for the thermal shot noise.

Anticipating detailed discussion of our results in Secs. V
and VI, in Fig. 2 we present the average conductance of a
1D system with m topologically protected modes as a func-
tion of the wire length L. It shows how the classical ohmic
behavior 〈g〉 ∼ ξ/L at short lengths (ξ is an analog of the
localization length) undergoes a crossover to the regime where
all unprotected modes are fully localized. In the limit L � ξ

conductance approaches the value 〈g〉 = m/2 since only m
topologically protected modes evade Anderson localization
and they carry current only in one direction. For m > 0, cor-
rection to this asymptotic value is exponential, 〈g〉 − m/2 ∝
e−L/Lloc (m), with the localization length of unprotected modes
Lloc(m) given by

Lloc(m)/ξ =
{

8/m2, m � 4;

1/(m − 2), m � 4.
(2)

It is worth noting that Lloc(m) decreases with increasing m, as
can be seen in Fig. 2.

The main technical achievement of this paper is the
construction of the full set of eigenfunctions for the transfer-
matrix Hamiltonian of the two-replica supersymmetric sigma
model with the WZW term. This technique is closely
connected with the Fourier analysis on the corresponding
symmetric superspace (sigma-model manifold). In our pre-
vious paper, we have constructed a full set of eigenstates of
the Laplace operator on this superspace [23]. This set has a
complex hierarchical structure with some parts inherited from
the one-replica model. In the present paper, we generalize this
construction to the m �= 0 case, which results in a vector po-
tential in the transfer-matrix Hamiltonian corresponding to the
WZW term in the action. We will demonstrate that this vector

potential gives rise to additional eigenfunctions corresponding
to bound states on the supermanifold.

The paper is organized as follows. In Sec. II we introduce
the sigma-model formalism in application to the two-replica
version of class D and present the calculation scheme for the
transport moments. We briefly outline the algorithm described
in detail in Ref. [23] and explain the modifications introduced
by the WZW term. In Sec. III we construct the radial eigenba-
sis of the Laplace operator on the sigma-model supermanifold
and discuss its differences compared to the m = 0 case. We
use the constructed eigenfunctions to build the heat kernel of
the sigma model in Sec. IV and comment on the integration
peculiarities in the momentum space. We present results of our
study in Sec. V and draw conclusions in Sec. VI. An outline
of the sigma-model derivation with the WZW term is given
in Appendix A. Details of the gauge factor calculation for the
vector potential induced by the WZW term can be found in
Appendix B.

II. SIGMA-MODEL FORMALISM

In this section we introduce the nonlinear sigma-model
formalism and apply it to the calculation of the transport prop-
erties. In many aspects our analysis follows the simpler m = 0
case (disordered wire without protected modes) and we refer
the reader to Ref. [23] for the details of such a calculation.
In the present section we will particularly focus on the points
that are specific for the topologically nontrivial m �= 0 case.

A. Sigma-model with WZW term

We perform our study in the framework of the supersym-
metric nonlinear sigma model [28]. Its objective is to average
a product of a certain number n of bosonic and an equal
number n of fermionic Green’s functions over disorder real-
izations. We call the parameter n the number of replicas in the
theory. Any superconducting Hamiltonian has a special mirror
symmetry of its spectrum that results in an additional structure
of the sigma model in the particle-hole space.

By extracting low-energy properties via functional integra-
tion approach, we arrive at an effective description of soft
electronic modes of the disordered system (diffusons and
cooperons) in terms of a field theory for a supermatrix field
Q, which belongs to a certain supermanifold. In our case, the
supermatrix Q ∈ BF ⊗ PH ⊗ R belongs to the tensor product
of the Bose-Fermi (BF), particle-hole (PH), and replica (R)
spaces. Hence the overall size of Q is 4n. In addition, Q satis-
fies Q2 = 1 and is subject to the charge conjugation constraint
Q = CT QT C = −Q. The latter reflects superconducting sym-
metry of the underlying Bogoliubov-de Gennes Hamiltonian.
The matrix C, which defines charge conjugation, should sat-
isfy CT C = 1 and C2 = −k, where k = diag{1,−1}BF is a
signature matrix in the BF space [explicit representation of
the matrix C can be found in Appendix B, see Eq. (B2)]. In
general, the matrix Q can be represented as

Q = T −1�T, T = T −1. (3)

The matrix � represents a certain point on the sigma-model
manifold satisfying � = −�, str � = 0, and �2 = 1. The
whole manifold is then generated by rotations of � with
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elements T from the corresponding supergroup G. Within G
there are certain rotations that commute with � and hence
do not change Q. They form a subgroup K ⊂ G. The sigma-
model manifold is thus a symmetric superspace (coset) G/K
with [K,�] = 0.

The sigma-model action for the quasi-1D topological wire
of symmetry class D has the form [10]

S = −
∫ L

0
dx str

[
ξ

16
(∇Q)2 + m

4
T −1�∇T

]
. (4)

Here ξ = (nL + nR)l is the correlation length and l is the mean
free path. The second, Wess-Zumino-Witten (WZW) term in
the action takes into account the imbalance between right-
and left-propagating channels. Its prefactor m = |nR − nL| de-
termines the number of topologically protected modes in the
system. An outline of the derivation of Eq. (4) is given in
Appendix A.

For a supersymmetric sigma model of class D with n repli-
cas, the target manifold is SpO(2n,R|2n)/U(n|n) [33,34]. Its
compact Fermi-Fermi sector O(2n)/U(n) has two disjoint
components corresponding to the two components of the
O(2n) group. Such a structure of the sigma-model manifold
implies that the Q matrix configurations can include jumps
between the two parts of the target manifold. Inclusion of such
jumps is necessary to ensure proper exponential localization
in wires of class D without topological terms [8,31,35].

In our earlier paper, Ref. [23], we studied a critical regime
between topological and trivial gapped states in a Majorana
wire of class D. This problem corresponds to the case m = 0
and to the absence of jumps between two parts of the man-
ifold. The latter condition is ensured by the fact that the
statistical weight of such jumps changes sign at the transi-
tion between trivial and Majorana state [8]. In the present
case of an imbalanced system with m �= 0, the jumps of the
matrix Q are also fully suppressed. Indeed, the WZW term
introduces a random phase factor to the amplitude of every
jump. Averaging over these phases completely cancels possi-
ble contribution of such discontinuous configurations of Q.
This is quite natural since both in the critical regime with
m = 0 studied earlier and for the topological edge transport
with m �= 0 considered here full localization does not occur.
This means we can limit our study of the sigma model of
class D only to the connected component of the manifold
SO(2n)/U(n) in the compact sector.

The WZW term in the action (4) is written in terms of
the matrix T rather than Q. In order to ensure that the action
depends only on the Q-matrix configuration, we should apply
some additional constraint on the choice of T . First, let us
point out that the sigma model is well defined only for closed
trajectories in terms of Q. This is consistent with the fact
that the theory is derived for edge modes of a 2D topological
superconductor, hence they are automatically closed. Second,
the manifold of the sigma model of class D is simply con-
nected. This means that any closed trajectory in terms of Q
can be continuously deformed into a single point. We will
require that the corresponding trajectory in terms of T is also
topologically trivial and can be shrunk into a single point
within the group G. Note that the group G, unlike the coset
space G/K , is not simply connected. Hence this condition on

T is not trivial. The derivation of the action (4) in Appendix A
explicitly employs this topological property and demonstrates
the invariance of the action with respect to reparametrizations
of the field trajectory in terms of T .

B. Cartan-Efetov parametrization

Transport properties of a disordered system can be inferred
from the (twisted) partition function of the nonlinear sigma
model. For a system of 1D geometry this partition function
is given by the path integral with the sigma-model action.
The symmetry of the sigma-model manifold always allows
us to bring the initial point of any trajectory to �. Hence we
consider only path integrals for trajectories starting at Q = �,

Z[Q] =
∫ Q(L)=Q

Q(0)=�

D[Q(x)]e−S[Q]. (5)

The end point of the path integral can be also brought to its
simplest form by some rotation Q → U −1�U with [�,U ] =
0. Such rotations with a constant matrix U do not shift the
initial point and also preserve the form of the action. To take
advantage of this symmetry we will use the Cartan decompo-
sition of the group G and define Cartan-Efetov coordinates on
the sigma-model manifold.

Any matrix T ∈ G can be decomposed into the following
product:

T = U1eθ̌/2U . (6)

Both matrices U1 and U commute with � and thus belong
to the subgroup K ⊂ G, while θ̌ is taken from the maximal
Abelian subalgebra of group G whose generators anticom-
mute with �: {�, θ̌} = 0. This representation is known as
the Cartan decomposition of T and θ̌ is an element of the
Cartan subalgebra. With such a form of the matrix T , we
have

Q = U −1�eθ̌U . (7)

The matrix Q is independent of U1 and belongs to the coset
space G/K as was discussed above. We see that by a certain
U rotation it is always possible to bring the final point of our
path integral (5) to the form Q = �eθ̌ . Hence the partition
function depends on the Cartan angles θ̌ only.

Since the Cartan subalgebra is Abelian, it is always pos-
sible to choose a representation that brings θ̌ to explicitly
diagonal form [see Eq. (B1)]. In class D with n = 2 replicas
there are two Cartan angles in the noncompact boson sector
and only one angle in the compact fermion sector. We will
denote these angles as θB1, θB2, and θF. Certain rotations U can
lead to permutations of the diagonal elements of the matrix
θ̌ . Effectively this may lead to changing of the sign of any
individual angle θi or to the interchange θB1 ↔ θB2. To remove
the ensuing uncertainty in the definition of θ̌ , we will assume

θB1 > θB2 > 0, 0 < θF < π. (8)

The partition function (5) depends only on the values of
Cartan angles at the final point of all trajectories. Once the
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partition function is known we can readily express first three
moments of conductance by the following derivatives [23]:

〈g〉 = −4
∂2Z (θi )

∂θ2
B1

∣∣∣∣
0

, (9a)

〈g2〉 = 16
∂4Z (θi )

∂θ2
B1∂θ2

B2

∣∣∣∣
0

, (9b)

〈g3〉 = −32
∂6Z (θi)

∂θ2
B1∂θ2

B2∂θ2
F

∣∣∣∣
0

. (9c)

Here every derivative is taken at the point θ̌ = 0.
Strictly speaking, in the evaluation of the partition function

(5) we consider trajectories Q(x) starting at � and ending at
Q with certain nonzero values of the Cartan angles θ̌ . Such
trajectories are not closed and the WZW term in the action is
not well defined for them as explained above. This issue can
be resolved in the following way. We augment each trajectory
going from � to Q with an additional segment that goes back
from Q to � and makes the trajectory closed. The simplest
choice is to take the shortest closing path along a geodesic line
on the sigma-model manifold. We only need to add the value
of the WZW term along this additional segment to the overall
action. More detailed discussion of this closing procedure can
be found in Ref. [10]. In the subsequent analysis, we will
use a special gauge choice [see Eq. (17) below] that renders
the contribution of the closing geodesic segment of every
trajectory identically zero. This will allow us to disregard the
contribution of outer edges and focus on the transport along
inner interface only.

The structure of the symmetric supermanifold of the sigma
model can be further detailed by specifying the corresponding
roots and root vectors [36]. A general matrix T in the def-
inition (3) can be chosen in the exponential form T = eW ,
where W = −W . Matrices W obey a linear constraints and
thus span a certain linear space (Lie algebra of the group G).
We construct a basis in this space by defining root vectors Zα .
They are simultaneous eigenvectors of the adjoint action of all
elements of the Cartan subalgebra: [θ̌ , Zα] = α(θ̌ )Zα . Indeed,
since Cartan subalgebra is Abelian, it is always possible to
simultaneously diagonalize all the commutators [θ̌ , ·] and find
the basis of root vectors Zα . The corresponding eigenvalue
α(θ̌ ) is a linear function of all the elements of θ̌ . It is called a
root and can be viewed as a vector from the conjugate space to
the Cartan subalgebra. We will include in the basis {Zα} only
nonzero root vectors, that is we exclude the elements of Cartan
subalgebra from this set. If a certain simultaneous eigenvalue
α(θ̌ ) is degenerate and has more than one corresponding root
vector Zα , we say that the multiplicity mα of this root is greater
than one. In a supersymmetric space there are bosonic and
fermionic roots. Fermionic roots have Grassmann-valued root
vectors and their degeneracy is always at least 2. However,
the corresponding multiplicity should be taken with a negative
sign [37]: mα = −2.

Roots obey a set of remarkable geometrical properties that
allows to fully classify all possible symmetric spaces by their
root systems [36]. However, this goes beyond the scope of
our paper. In the subsequent analysis we will only need the
following simple property: if α(θ̌ ) is a root, −α(θ̌ ) is also
a root. We can separate the full set of roots into two halves

TABLE I. Root system for the sigma-model manifold of class
D with n = 2 replicas: positive roots (α), their multiplicities (mα),
and corresponding root vectors (Zα(,i)). The matrix �i j has 1 at the
position (i, j) and 0 elsewhere [in the basis with the diagonal matrix
θ̂ and the charge conjugation matrix C given by Eqs. (B1) and (B2),
respectively].

Bosonic (mα = 1) Fermionic (mα = −2)

α Zα α Zα,1 Zα,2

2θB1 �18 θB1 + iθF �15 − �38 �16 + �48

2θB2 �27 θB1 − iθF �13 − �48 �14 + �68

2θF �36 + �45 θB2 + iθF �25 − �37 �26 + �47

θB1 + θB2 �17 − �28 θB2 − iθF �23 − �57 �24 + �67

θB1 − θB2 �12 − �78

by drawing a hyperplane in the space of roots (conjugate to
the Cartan subalgebra). All the roots that point to one side
of this hyperplane are called positive roots; their set will be
denoted R+. The roots pointing in the other half-space are
called negative. For every positive root α there is always a
corresponding negative root −α.

It is always possible to represent matrices t that generate
the rotation T such that the Abelian Cartan subalgebra corre-
sponds to diagonal matrices. Furthermore, it is also possible
to bring the matrices representing all positive root vectors to
explicitly upper triangular form. Then negative root vectors
will be given by lower triangular matrices. We list roots and
root vectors for the sigma-model manifold of symmetry class
D with n = 2 replicas in Table I.

The knowledge of the root system gives us one important
piece of information that will be extensively used below.
Namely, it allows us to find the Jacobian of the Cartan
parametrization [36],

J (θi ) =
∏

α∈R+

[
sinh

α(θ̌ )

2

]mα

= (cosh θB1 − cosh θB2) sinh θB1 sinh θB2 sin θF

(cosh θB1 − cos θF)2(cosh θB2 − cos θF)2
. (10)

This Jacobian is the square root of the superdeterminant of the
metric tensor of the sigma-model manifold and hence defines
the invariant integration measure in Cartan angles θ̌ .

C. Transfer-matrix approach

Evaluation of the partition function (5) can be accom-
plished within the transfer-matrix technique [38]. It amounts
to mapping the path integral to the evolution operator of the
corresponding quantum Hamiltonian in the imaginary time x.
We can thus equate the partition function to the resulting wave
function after the evolution,

Z[θ̌ ] = 	(Q = �eθ̌ , x = L). (11)

The result of such an evolution is usually termed the heat
kernel. Changing of 	 with x is governed by the Schrödinger
equation with the Hamiltonian derived from the action (4),

ξ

2

∂	(Q, x)

∂x
= −Ĥ	(Q, x). (12)
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The initial condition is 	(Q, x = 0) = δ(Q,�), with the delta
function that fixes Q = �.

The heat kernel can then be expressed as the spectral de-
composition over the eigenfunctions φν of Ĥ ,

	(Q, x) =
∑

ν

μνφν (Q)e−2ενx/ξ , (13)

where εν are the eigenvalues and μν is a proper measure.
In a given coordinate system Xα on the sigma-model mani-

fold, the transfer-matrix Hamiltonian for the action (4) has the
form [32]

Ĥ = −1

J
(∂α − Aα )Jgαβ (∂β − Aβ ). (14)

Here gαβ is the metric tensor related to the length element as
[28,32]

− 1
2 str dQ2 = gαβdX αdX β. (15)

The factor J = √
sdet g is the Jacobian [for Cartan coordinates

it is given in Eq. (10)]. A new ingredient in the Hamiltonian
(14) compared to the m = 0 case is the appearance of a vector
potential Aα generated by the WZW term

Aα = m

4
str T −1�∂αT . (16)

As was already discussed earlier, this vector potential is
written in terms of T rather than Q, and hence is not gauge in-
variant. Fixing the gauge means assigning a particular unique
matrix T to every value of Q. This will allow to express Aα as
a function of Q.

We will use the gauge

T = U −1eθ̌/2U . (17)

It means that we fix the matrix U1 = U −1 in the Cartan de-
composition (6) of T . Substituting Eq. (17) into Eq. (16), it
is easy to see that the vector potential depends on the Car-
tan angles θ̂ only. This property will greatly simplify further
analysis. Indeed, initial condition of the evolution Q = � is
invariant under rotations Q → U −1QU with any matrix U
that commutes with �. The same property is also ensured for
the Hamiltonian (14) in the chosen gauge (17). Hence we can
limit our consideration to the “radial” eigenfunctions φν that
depend only on θ̌ .

This situation is similar to solving quantum evolution prob-
lem for a charged particle on a 2D plane subject to a uniform
magnetic field. If one chooses circular gauge with the origin
that coincides with the initial position of the particle the whole
evolution operator at all times will depend only on the radial
coordinate but not on the polar angle.

We can write explicitly the radial Hamiltonian that involves
only the Cartan angles θ̌ ,

H = −� + W (θ̌ ), (18)

where the radial Laplace operator is

� = 1

J

(
∂

∂θB1
J

∂

∂θB1
+ ∂

∂θB2
J

∂

∂θB2
+ 1

2

∂

∂θF
J

∂

∂θF

)
(19)

and the Jacobian is given by Eq. (10). The WZW vector
potential Aα enters the radial Hamiltonian (18) through the

potential term W (θ̌ ) = −AαAα . For the sigma model of class
D with n = 2 replicas it reads

W (θ̌ ) = m2

16

(
tanh2 θB1

2
+ tanh2 θB2

2
+ 2 tan2 θF

2

)
. (20)

In the next section we will explicitly construct eigenfunctions
of the Hamiltonian (18).

In the limit of large noncompact angles θB1 and θB2, the
transfer-matrix Hamiltonian (18) greatly simplifies. Assuming
θB1 � θB2 � 1 [note how the domain (8) restricts possible
values of θ̌ ], we reduce it to the form

H ≈ − ∂2

∂θ2
B1

− ∂2

∂θ2
B2

+ ∂

∂θB2

+ 1

2

(
− ∂2

∂θ2
F

− cot θF
∂

∂θF
+ m2

4 cos2(θF/2)

)
. (21)

Since all the variables are decoupled, we can easily find the
limiting form of an eigenfunction,

φq(θ̌ ) ≈ eiq1θB1+(iq2+1/2)θB2 cosm(θF/2)P(0,m)
l−m/2(cos θF), (22)

with P being the Jacobi polynomial. The corresponding eigen-
value is

εq = q2
1 + q2

2 + l (l + 1)

2
+ 1

4
. (23)

The asymptotic plane waves in the noncompact angles are
parametrized by momenta q1,2, while the dependence on the
compact angle θF is given by the Jacobi polynomial whose
index is quantified by l . For brevity, we use the single index q
to denote all three components of momentum.

In order to ensure that
√

Jφ does not exponentially grow at
large values of θ̌ , we assume q1,2 real. At the same time, the
eigenfunction has a well-defined single value on the segment
0 < θF < π provided the Jacobi polynomial index l − m/2 is
a non-negative integer. From this analysis of the asymptotic
behavior we conclude that the presence of the WZW term in
the action and hence the potential term in the transfer-matrix
Hamiltonian (18) do not alter the spectrum of eigenvalues (23)
in its general form. However, in the following we will show
that there are additional families of eigenfunctions, which
have m-dependent eigenvalues.

D. Iwasawa parametrization

Eigenfunctions of the radial Laplace operator (18) can be
efficiently constructed via Iwasawa trick, which was origi-
nally developed for the case of noncompact manifolds [36].
Later, this approach was generalized to compact [39] and
supersymmetric [30,37] cases and became a conventional tool
in physical applications. Such generalization requires working
with eigenspace representations on the complexified space,
which, however, does not essentially change the key formulas.
We explained the peculiarities of this trick for the two-replica
class D supersymmetric sigma model without a WZW term in
our previous paper [23]. Below we further elaborate on this
method in the presence of topological WZW contribution.

Iwasawa representation is based on the following decom-
position of the matrix T :

T = Veǎ/2N. (24)
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Here V is a matrix that commutes with �, ǎ is an element of
the Cartan subalgebra parametrized by three angles aB1, aB2,
and aF, and N = en is an exponential of a nilpotent matrix n
that represents a linear combination of positive root vectors.

It is known that in the m = 0 case this parametrization has
the following important property. The radial Laplace operator
in Iwasawa coordinates [part of the full Laplace operator (14)
that involves only ǎ] does not explicitly depend on ǎ. Instead,
it contains only derivatives with respect to ǎ and hence simple
plane waves exp (i

∑
i piai ) are the radial eigenfunctions.

It turns out [32] that this property does persist in the pres-
ence of the WZW term when the proper gauge choice is made.
Namely, one should assume V = 1 in the decomposition (24).
Then the ǎ-dependent part of the Hamiltonian takes the fol-
lowing simple form:

Ĥ = −
(

∂2

∂a2
B1

+ ∂2

∂a2
B2

+ 1

2

∂2

∂a2
F

− ∂

∂aB2
+ i

2

∂

∂aF

)
. (25)

The radial Laplace operator in the Iwasawa coordinates is not
only independent of ǎ but also does not contain any potential
whatsoever!

Eigenfunctions of the radial Hamiltonian (25) in Iwasawa
coordinates are plane waves

φq(ǎ) = exp[iq1aB1 + (iq2 + 1/2)aB2 + ilaF]. (26)

Below we will also use a short-hand notation for this linear
combination, φq(ǎ) = eiq·a. The corresponding eigenvalue for
this plane wave is given by Eq. (23).

We have thus established a set of radial eigenfunctions in
the Iwasawa coordinates. In order to calculate the heat kernel
(13), we will need radial eigenfunctions in the Cartan-Efetov
coordinates. Let us first relate the two sets of coordinates to
each other,

T = Veâ/2N = U −1eθ̌/2U . (27)

This matrix identity allows us to express ǎ and V as func-
tions of θ̌ and U . In Ref. [23], we have discussed in detail
how to resolve these equations for ǎ. Solution for the matrix
V (θ̌ ,U ) is explained in Appendix B. Let us note that we
have chosen here T in the proper radial gauge (17) for the
Cartan parametrization. However, this does not correspond to
the proper gauge in Iwasawa coordinates since V �= 1. We can
account for this new gauge choice in the Iwasawa coordinates
by multiplying the plane wave eigenfunction (26) with the
proper phase factor [cf. Eq. (A25)],

φq(θ̌ ,U ) = e(m/4) str[� ln V (θ̌ ,U )]eiq·a(θ̌ ,U ). (28)

Further steps in the derivation of radial wave functions
follow Refs. [23,32]. By construction, the new function (28) is
automatically an eigenfunction of the full Hamiltonian (14) in
Cartan coordinates θ̌ and U with the gauge (17). However, this
eigenfunction does explicitly depend on U . In order to obtain
the corresponding radial eigenfunction that depends on θ̌ only,
one has to perform isotropization of (28) over the group K of
all possible matrices U ,

φq(θ̌ ) = 〈e(m/4) str[� ln V (θ̌ ,U )]eiq·a(θ̌ ,U )〉U∈K . (29)

Usually (for noncompact symmetric spaces) isotropization
(29) is performed by integration over K group. However, as

explained in detail in Ref. [23], the peculiarity of the super-
symmetric model is that a naïve integration over the whole K
group leads to the loss of some eigenfunctions. This happens
because for certain values of momentum vector q the inte-
grand lacks some of the Grassmann variables and the whole
integral vanishes. A correct strategy to obtain these extra
eigenfunctions is to integrate only over required Grassmann
variables, which can be achieved by a special parametrization
of the U matrix.

Radial eigenfunctions defined by Eq. (29) are symmetric
under changing sign of any of q1,2, mapping l → −l − 1, or
interchanging q1 ↔ q2. This is a consequence of the Weyl
group symmetry of the root system. Therefore we can limit
the space of eigenfunctions to the domain q1 > q2 > 0 and to
the non-negative values of l only.

III. STRUCTURE OF THE EIGENBASIS

In the m = 0 case [23], we found that the radial eigenbasis
of the Laplace-Beltrami operator on the n = 2 sigma-model
supermanifold has a hierarchical structure and consists of
three families: (i) the zero mode (just unity for m = 0),
(ii) one-parameter family, and (iii) the most generic three-
parameter family. While the latter is routinely obtained via
the Iwasawa trick, identifying one-parameter family and the
zero mode following the same approach is a nontrivial task.
It requires modification of the standard procedure to avoid
nullification of the integral (29) due to the lack of a complete
set of Grassmann variables in each term of the integrand.

Below we apply Eq. (29) to obtain the eigenfunctions of the
transfer-matrix Hamiltonian (18) in the m �= 0 case. We com-
pute all three families of radial eigenfunctions for arbitrary
value of m. While it is in general impossible to get closed
analytic expressions for the eigenfunctions, we will identify
their large- and small-θ asymptotics. This will be sufficient
to properly normalize the eigenfunctions, find the spectral
decomposition of the heat kernel (13), and compute transport
moments (9).

A. Zero mode

It can be checked by a direct computation that the follow-
ing function is the zero mode of the Hamiltonian (18):

	0 = cosm(θF/2)

coshm/2(θB1/2) coshm/2(θB2/2)
. (30)

This function can be derived from Eq. (29) by setting q1 =
im/4, q2 = im/4 + i/2, and l = m/2. [With these values of
momenta, the wave function does not depend on the Iwasawa
angles ai, as can be seen from Eq. (B15).] The corresponding
eigenvalue is zero according to Eq. (23). In the m = 0 case
this expression equals unity, which is known to be the zero
mode in the supersymmetric theories without a WZW term.
For a nonzero m, the eigenfunction automatically nullifies at
the “south pole” θF = π , the property discussed in detail in
Ref. [10].

B. One-parameter family

The one-parameter family of eigenfunctions appears when
only the first Iwasawa angle aB1 is present in Eq. (29) and
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corresponds to q2 = im/4 + i/2 and l = m/2, while q1 is an
arbitrary real number. The numerator of Eq. (B15) indeed
contains only aB1 in this case. The eigenvalue is

εq1 = q2
1 + m2

16
, (31)

as follows from Eq. (23). These eigenfunctions are in one-to-
one correspondence with the eigenfunctions of the transfer-
matrix Hamiltonian for the sigma model with n = 1 replica.
We can establish this relation by inspecting the Hamiltonian
(18) in the vicinity of the “bosonic” line θB2 = θF = 0. [Note
that a similar line θB1 = θF = 0 is excluded from the domain
of definition (8).] Expand an eigenfunction as

φ ≈ ψ (θB1) + u(θB1)θ2
B2 + v(θB1)θ2

F . (32)

Acting with the Hamiltonian (18) on this function and expand-
ing the result in small θB2 and θF, we obtain

Hφ =
(

− ∂2

∂θ2
B1

+ 1

sinh θB1

∂

∂θB1
+ m2

16
tanh2 θB1

2

)
ψ

+ θ2
B2 − θ2

F

θ2
B2 + θ2

F

(4u − 2v). (33)

From this expression we see that a unique limiting value of the
function at the bosonic line θB2 = θF = 0 exists only provided
v = 2u. At the same time, the equation for ψ (θB1) acquires a
form of the transfer-matrix Hamiltonian of class D with only
one replica acting on a function of only one Cartan angle θB1.
Hence we can readily identify the eigenfunction in this limit

φq1 (θB1) = −
(

q2
1 + m2

16

)
2 sinh2(θB1/2)

coshm/2(θB1/2)

× F

(
1−m

4
+ iq1, 1−m

4
− iq1; 2; − sinh2 θB1

2

)
.

(34)

Asymptotic expansion at large values of θB1 yields a plane
wave of the following form:

φq1 (θB1 � 1) = cq1 eiq1θB1 + c−q1 e−iq1θB1 , (35)

cq1 = 21−2iq1�(2iq1)

�(iq1 + m/4)�(iq1 − m/4)
. (36)

The amplitude cq1 that appears here is called Harish-Chandra
c function. It can be derived directly from Eq. (29) without
referring to the exact function (34). Knowledge of cq1 is suffi-
cient to normalize the eigenfunction as we will show later.

We can also use Eq. (29) to find the eigenfunction at the
line θB1 = θB2 = 0 for arbitrary θF,

φq1 (θF) = −4
(
q2

1 + m2/16
)

cosm(θF/2) sin2(θF/2). (37)

This expression allows us [23] to recover the full small-θ
expansion of the eigenfunctions to be used in evaluating trans-
port properties according to Eqs. (9).

The one-parameter family of eigenfunctions is
parametrized by real values of the first momentum component
q1. The zero mode (30) can be also restored from the
one-parameter family if we set momentum to the imaginary
value q1 = im/4. For sufficiently large values of m, a finite

set of discrete eigenfunctions appears with q1 = i(m/4 − 1),
i(m/4 − 2), i(m/4 − 3) etc. as long as these imaginary values
are positive. These functions exponentially decay in the limit
θB1 � 1 as can be seen from Eq. (36). They correspond to
eigenstates localized in the potential W , cf. Eq. (14). We will
discuss these functions in more detail later.

C. Three-parameter family

Generic radial eigenfunctions of the Hamiltonian (18) are
parametrized by three components of momentum and are
given by the general expression (29). The values of q1 and
q2 are arbitrary real numbers and l − m/2 must be an integer.
The corresponding eigenvalue is given by Eq. (23).

It is not feasible to calculate the full integral over U in
Eq. (29) at arbitrary θ̌ . However, we can extract a limiting
form of the eigenfunction at large values of θ̌ . In order to do
so, we will temporarily assume that momenta q1 and q2 have
a small negative imaginary part

Im q1 < Im q2 < 0. (38)

Then the limiting plane wave (22) exhibits some ex-
tra exponential growth and dominates at large θB1 �
θB2 � 1 over other terms. Calculation of the integral
(29) under this assumptions yields the Harish-Chandra c
function, which is just the prefactor for the asymptotic
expression (22),

φq ≈ cq1,2 eiq1θB1+(iq2+1/2)θB2 cosm(θF/2)P(0,m)
l−m/2(cos θF), (39)

cq1,2 = (l + 2iq1)(l + 2iq2)(1 + l − 2iq1)(1 + l − 2iq2)

πC(m)
q1 C(m)

q2 C(0)
q1+q2

C(0)
q1−q2

,

(40)

C(m)
q = �

(
1
2 + iq + m

4

)
�
(

1
2 + iq − m

4

)
√

2π 2−2iq�(2iq)
. (41)

For brevity we are again using a single index q to denote all
three components of momentum q1, q2, and l .

Now we remove the above assumption (38) and consider
real values of q1,2. In this case the plane wave (39) is no
longer the only dominant term for large θ̌ . A full eigen-
function must be symmetric with respect to the Weyl group
acting on momentum. That is, the function should be invariant
under changing sign of q1 and/or q2 as well as under inter-
changing q1 ↔ q2. Thus we can restore the full asymptotics
of the eigenfunction by averaging Eq. (39) over the Weyl
group

φq ≈ cosm(θF/2)P(0,m)
l−m/2(cos θF)eθB2/2

∑
w∈W

cwqei〈wq|θ〉. (42)

Here we use the following Dirac notations in the noncompact
variables: 〈q|θ〉 = q1θB1 + q2θB2 and denote by wq the action
of the Weyl group element w in the noncompact sector on
the momentum q. Weyl group in the compact sector contains
the only symmetry operation l → −1 − l . This symmetry is
fulfilled by Eq. (42) automatically due to the properties of
Jacobi polynomials.
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Besides the large-θ asymptotics, Eq. (29) allows us to com-
pute the eigenfunction explicitly at the line θB1 = θB2 = 0,

φq(θF) = cosm(θF/2) sin4(θF/2)

×
(
4q2

1 + l2
)(

4q2
2 + l2

)
(4l2 − m2)

2l + 1

× F

(
1 − l + m

2
, 1 + l + m

2
; 2; sin2 θF

2

)

+ {l → −l − 1}. (43)

We will use this result later to infer [23] the small-θ expansion
required in Eqs. (9).

For large enough values of m some extra eigenfunctions
appear with either one or both q1,2 taking discrete imaginary
values. We will discuss these cases in the next section.

IV. HEAT KERNEL CONSTRUCTION

Now, once all the eigenstates of the transfer-matrix Hamil-
tonian are identified, we are in a position to write the heat
kernel as a sum over these eigenstates. According to Eq. (13),
we have

	 =
∑

ν

μνφνe−2ενx/ξ = 	0 + 	 (1) + 	 (3). (44)

Here the index ν enumerates all the eigenstates of the transfer-
matrix Hamiltonian, εν are the corresponding eigenvalues, and
μν is the proper weight factor yet to be established. Since
the Hamiltonian has both discrete and continuous branches
of eigenstates, summation over ν implies either a sum or an
integral where appropriate.

As discussed in Sec. III, there are in total three different
families of eigenstates: the zero mode 	0, one-parameter
family as in the model with one replica, and generic three-
parameter family. We have indicated these contributions
separately in the right-hand side of Eq. (44). The zero mode
(30) enters the expansion (44) with the unit weight. This is
the only eigenfunction that is nonzero at the origin θ̌ = 0 and
its weight is fixed by the initial condition for the evolution
equation (13). Two remaining parts of the heat kernel are
considered below.

The main guiding principle of our construction is the fol-
lowing. We do know the correct expansion of the heat kernel
in the case m = 0 from Ref. [23]. The weights of the wave
functions in the heat kernel expansion (44) are expressed
through the Harish-Chandra c function describing the large-θ
asymptotics. We assume that a similar relation holds in the
case of nonzero m with the functions (36) and (40). In order to
account for all relevant discrete eigenstates of the Hamiltonian
(18), which appear at nonzero m, we will construct the heat
kernel by performing analytic continuation of the momentum
integrals in Eq. (44) in the parameter m starting at m = 0.

A. One-parameter family

The weights for the one-parameter family of eigenfunc-
tions (34) can be deduced from the heat kernel on the
“bosonic” line θB2 = θF = 0. This is equivalent to finding
the heat kernel expansion for the one-replica model [32]. All
the generic (three-parameter) eigenfunctions vanish on this

line hence we can disregard them for now and write the heat
kernel as

	(θB1) = 	0 + 	 (1), (45)

	 (1) =
∫

dq1 μq1φq1 e−2εq1 x/ξ . (46)

Here the eigenvalue is given by Eq. (31).
The weight μq1 can be inferred from the θB1 � 1 limit (35)

of the eigenfunction (in quantum mechanics, this approach is
known as normalization of the wave functions of continuous
spectrum by their asymptotics),

μq1 = 1

πcq1 c−q1

= 8q1

16q2
1 + m2

×
[

coth

(
πq1 + iπm

4

)
+ coth

(
πq1 − iπm

4

)]
.

(47)

This weight function is even in q1 since the eigenfunctions
with momenta ±q1 actually coincide. This is just a manifes-
tation of the Weyl group symmetry for the model with one
replica. Hence in the integral (46) we are supposed to retain
only positive q1 in order to count each eigenfunction once.
This provides a correct heat kernel expansion on the line
θB2 = θF = 0 in the case m = 0. For nonzero m, we should
take into account possible localized states that correspond to
some discrete imaginary values of q1, as was pointed out in the
end of Sec. III B. We will achieve this by analytic continuation
of the integral (46) in the parameter m starting at m = 0.

We begin with “unfolding” the Weyl group symmetry and
introduce the modified weight factor

μ̃q1 = 8q1

16q2
1 + m2

coth

(
πq1 − iπm

4

)
, (48)

implying an integration over all real values of q1 in Eq. (46).
The unfolded weight function (48) has poles at the following
imaginary values of q1:

q1 = im

4
+ in, n ∈ Z. (49)

[There is also a pair of poles at q1 = ±im/4 from the de-
nominator of Eq. (48) but these poles are canceled by the
same factor in the numerator of the eigenfunction itself, cf.
Eq. (34).] Since we have “unfolded” the q1 integral and re-
tained only one cotangent factor in Eq. (48), these poles move
only upwards in the complex plane with increasing m. This
fact is crucial for the analytic continuation of the integral
(46) in the parameter m. There is also one special pole at
q1 = im/4 corresponding to n = 0 in the series (49). This pole
lies exactly on the integration contour when m = 0. However,
its residue is zero due to the factor q1 in the numerator of
Eq. (48). If we deviate from m = 0 by assuming a small
positive value of m, this pole acquires a finite residue but also
shifts in the upper complex plane and lies now above the real
axis.

To maintain analyticity of the heat kernel as a function of
m we first shift the integration contour in the lower complex
plane of q1 by −i/2 to stay away from the pole at q1 = im/4
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(we can as well shift by any other negative amount between
0 and −i). Then with increasing m we will simultaneously
shift the integration contour upwards by im/4. This way we
will avoid any possible crossing of the integration contour by
the poles (49). With all these modifications, we can write the
one-parameter part of the heat kernel as

	 (1) =
∫ ∞−i/2+im/4

−∞−i/2+im/4
dq1 μ̃q1φq1 e−2εq1 x/ξ . (50)

We have thus obtained an exact expression for the one-
replica heat kernel in terms of the momentum integral with
shifted integration contour. To extract the information about
true eigenstates of the Hamiltonian we will now shift the
contour back to the real axis collecting all the relevant pole
contributions. After this backward shift we can also restore the
Weyl group symmetry and “fold” the measure back to Eq. (47)
keeping only positive real values of q1. This transformation
yields

	 (1) =
∫ ∞

0
dq1 μq1φq1 e−2εq1 x/ξ

−
�m/4�∑
n=1

16iq1

16q2
1 + m2

φq1 e−2εq1 x/ξ
∣∣∣
q1=im/4−in

. (51)

We see that aside from the usual eigenfunctions with real
positive q1 there is also a finite set of discrete eigenstates cor-
responding to imaginary values of q1. They are the eigenstates
of the Hamiltonian (18) localized by the potential term W . The
first such localized eigenfunction appears when m exceeds 4.

B. Three-parameter family

Let us now discuss the contribution 	 (3) of generic eigen-
functions with all three nontrivial components of momentum
to the heat kernel (44). As before, we can identify the weight
of such eigenstates using the value of their c function (40),

μq = 2l + 1

π2cq1,2 c−q1,2

= ρqT (m)
q1

T (m)
q2

T (0)
q1+q2

T (0)
q1−q2

, (52)

ρq = (2l + 1)q1q2
(
q2

1 − q2
2

)
[
4q2

1 + l2
][

4q2
2 + l2

][
4q2

1 + (l + 1)2
][

4q2
2 + (l + 1)2

] ,
(53)

T (m)
q = tanh

(
πq + iπm

4

)
+ tanh

(
πq − iπm

4

)
, (54)

where q = (q1, q2, l ).
Contribution of the generic eigenfunctions to the heat ker-

nel is

	 (3) =
∞∑

l=m/2

∫
dq1,2 μq φq e−2εqx/ξ . (55)

Here the eigenvalues εq are given by Eq. (23). Summation
over the compact momentum component l starts with m/2
and proceeds in integer steps: m/2, m/2 + 1, m/2 + 2 etc.
The domain of integration and contours for q1,2 are yet to be
established. In the case m = 0 this integral should be taken
over the region q1 > q2 > 0, which is known as the Weyl
chamber in momentum space. All other real values of q1,2

can be mapped into this region by an element of the Weyl
group.

To find appropriate integration limits for q1,2 we first “un-
fold” the Weyl group symmetry and extend the integration
to all real values of q1,2. This is done in full analogy with
the one-parameter eigenfunctions studied above. Using the
symmetries of the measure, we can reduce the weight down
to the following simple product of only two tanh factors:

μ̃q = 4ρq tanh(πq1 − πq2) tanh(πq1 − iπm/4). (56)

It is straightforward to check that symmetrization of μ̃q with
respect to the Weyl group restores the full expression (52).

Consider first the poles of this unfolded measure as a func-
tion of q1. We have a set of poles from the last tanh factor and
also two pairs of poles due to the denominator of ρq,

q1 = im

4
+ i

2
+ in, with n ∈ Z; (57)

q1 = ±
(

im

4
+ in

)
, with n = 0, 1, 2, 3 . . . (58)

In the second series of poles either n = l − m/2 or n = l −
m/2 + 1 hence it is a non-negative integer. The first series of
poles shifts only upwards with increasing m so we can avoid
crossing with these poles shifting the integration contour in
q1 by the same amount im/4. In the second set, poles with
positive imaginary part are moving upwards while negative
poles are moving downwards. Hence we do not have any
chance of crossing them except for the lowest one q1 = im/4.
This pole exists only in the very first term of the sum (56) with
l = m/2. To avoid crossing this pole we will additionally shift
our integration contour by an infinitely small amount −i0.

Possible poles in the variable q2 come from the factor
tanh(πq1 − πq2) in Eq. (56). We can avoid these poles by
shifting the contour for q2 by the same amount as the contour
for q1. Then the difference q1 − q2 will always remain real
and we never hit any singularity of the tanh function. The
denominator of ρq also provides a set of poles for q2 similar
to Eq. (58). However, these poles also stay away from the
integration contour as long as we apply the same shift to q2

as to q1.
We have thus established the following form of the three-

parameter part of the heat kernel valid for any positive m:

	 (3) =
∞∑

l=m/2

∫ ∞+im/4−i0

−∞+im/4−i0
dq1,2 μ̃q φqe−2εqx/ξ . (59)

As was already done earlier for the one-parameter family, we
can now shift integration contours for q1,2 back to the real
axis and collect residues in the poles crossed during this shift.
This way we will identify all the relevant eigenstates of the
Hamiltonian (18) in the three-parameter family. In order to do
this, we first change q2 to a new integration variable q2 − q1,
which runs along the real axis. Then we shift the integration
contour for q1 picking residues at the poles (57). Then we
restore the q2 variable and in a similar way shift its integration
contour to the real axis. In the end we also “fold” the double
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TABLE II. Coefficients χ (s)
q1

and χ (s)
q in Eq. (64), representing contributions of one- and three-parameter families to 〈gs〉, correspondingly.

The bottom line contains similar expressions for the (pseudo)Fano factor. In the second column, ε stands for the eigenvalue, as given by
Eq. (31).

χ (s)
q1

χ (s)
q

〈g〉 4ε 0

〈g2〉 8ε

3 (1 + ε + m) − 4(4l2−m2 )(l2+4q2
1 )(l2+4q2

2 )
3(2l+1) + {l → −1 − l}

〈g3〉 8ε

15 (ε + 1)(ε + 4) + εm
15 (36 + 48ε + 19m) − 2(4l2−m2 )(l2+4q2

1 )(l2+4q2
2 )(16ε+4l2−m2+12)

5(2l+1) + {l → −1 − l}

F 〈g〉 4ε

3 (1 − 2ε + m) − 2(4l2−m2 )(l2+4q2
1 )(l2+4q2

2 )
3(2l+1) + {l → −1 − l}

integral domain back to the region q1 > q2 > 0 and restore
the proper integration measure μq. This procedure yields

	 (3) =
∞∑

l=m/2

[
	

(3a)
l + 	

(3b)
l + 	

(3c)
l

]
(60)

with the following three terms:

	
(3a)
l =

∫
q1>q2>0

dq1,2 μq φq e−2εqx/ξ , (61)

	
(3b)
l = 8i

� m
4 + 1

2 �∑
n1=1

∫ ∞

0
dq2 ρq

[
coth

(
πq2 + iπm

4

)

+ coth

(
πq2 − iπm

4

)]
φq e−2εqx/ξ

∣∣∣∣
q1= im

4 −in1+ i
2

,

(62)

	
(3c)
l = 16

� m
4 + 1

2 �∑
n1=1

� m
4 �∑

n2=n1

ρq φq e−2εqx/ξ

∣∣∣∣q1= im
4 −in1+ i

2 ,

q2= im
4 −in2.

(63)

We see that aside from the standard continuous set of
eigenfunctions with real values of q1,2 there are two extra
contributions: A subfamily of eigenfunctions with discrete
imaginary q1 and continuous positive real q2 and a fully
discrete set with both q1 and q2 taking imaginary values.
The former subfamily of eigenfunctions is localized only
in θB1 while the latter functions are localized fully in both
noncompact variables θB1 and θB2. The first half-localized
eigenfunction appears when m exceeds 2 while the fully lo-
calized eigenstate is possible provided m � 4.

V. RESULTS

Once the expansion of the heat kernel (44) in eigenfunc-
tions is fully established, we are in a position to evaluate
all transport characteristics of the system from Eq. (9) with
the partition function (11). Equations (9) imply taking partial
derivatives at θi = 0 along the directions corresponding to dif-
ferent θi. We cannot calculate the mixed derivatives directly,
as we did not obtain the wavefunctions on the whole manifold
in an explicit form. However, in Ref. [23] we argued that it
is sufficient to know θF derivatives only, because the rest can
be expressed by applying the Schrödinger equation (12) to the
small-θ expansion. We thus use Eqs. (37) and (43) to express

conductance moments in the following form:

〈gs〉 =
(

m

2

)s

+
∫ ∞−i/2+im/4

−∞−i/2+im/4
dq1 μ̃q1χ

(s)
q1

e−2εq1 L/ξ

+
∞∑

l=m/2

∫ ∞+im/4−i0

−∞+im/4−i0
dq1,2 μ̃q χ (s)

q e−2εqL/ξ , (64)

where q = (q1, q2, l ) and the coefficients χ (s)
q1

and χ (s)
q are

listed in Table II. In the same table we provide coefficients for
the (pseudo)Fano factor of thermal shot noise power, which
is described by a similar integral representation, but without
the zero mode contribution [the first term in (64)]. The prefix
“pseudo” emphasizes the fact that F is the ratio of indepen-
dently averaged shot noise power and current (see Ref. [23]
for more details).

The first term in (64) stems from the zero mode (	0)
part of the heat kernel (44) and describes the contribution
of m protected modes. The latter are unidirectional in class
D, contributing m/2 to the mean conductance averaged over
opposite current directions [see the definition (1)]. At the
same time, there is no contribution from the zero mode to
the Fano factor because protected modes provide a quantized
conductance, which is not subject to the shot noise. Also,
according to Table II three-parametric eigenfunctions (	 (3))
do not contribute to the average conductance (formally since
their small-θ expansion starts from θ4). This reflects the fact
that 〈g〉 can be studied with a simpler one-replica sigma model
[10,32].

Equation (64) provides the main result of our paper in the
integral form. It contains integrations/summations over Iwa-
sawa momenta that are complicated and probably cannot be
taken analytically in the general case. We thus restrict analytic
investigation to the asymptotical regions of large/small wire
lengths L and complement them with the numerical computa-
tion for intermediate L. The latter are presented graphically in
Figs. 2 and 3.

In the long-wire limit, L � ξ , the asymptotic behavior of
conductance moments is determined by eigenfunctions with
the lowest eigenvalue εν , since they contribute the slowest
exponential to the heat kernel (44). The case with m = 0 was
discussed in detail in Ref. [23]. For m � 4, the lowest expo-
nential is provided by the one-parametric eigenfunction with
nearly zero momentum q1 ∼ 0. The corresponding asymp-
totics can be obtained via the steepest decent method. As long
as m > 4, the lowest eigenvalue is provided by the bound
state, which originates from the one-parameter family taken
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FIG. 3. Transport characteristics as a function of the system length L in the presence of m topologically protected modes: (a) average
conductance of unprotected modes in the logarithmic scale (with the topological contribution m/2 subtracted); (b) conductance variance;
(c) third cumulant of conductance 〈〈g3〉〉; (d) thermal Fano factor (ratio of disorder-averaged shot noise to the averaged heat current).

at an imaginary momentum q1 = i(m/4 − 1) [see Eq. (51)]
and has the eigenvalue εq1 = (m − 2)/2. Within described ap-
proach, we obtain the following asymptotics for conductance
moments:

〈gs〉 ∼
(

m

2

)s

+ α(m)
s

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gL, m = 0,

π2gLξe−m2L/8ξ

4L sin2(πm/4)
, 0 < m < 4,

gLe−2L/ξ , m = 4,

e−(m−2)L/ξ , m > 4,

(65)

where gL = √
2ξ/πL and numerical coefficients α(m)

s are
given in Table III for different values of m. A similar ex-
pression works for the Fano factor but with the first term
[(m/2)s] omitted and with the coefficient given in the last line
of the same table. For m > 0, 〈g〉 − m/2 ∝ e−L/Lloc (m), with the
localization length given by Eq. (2).

TABLE III. Numerical factor α(m)
s in the large-L asymptotics (65)

of conductance moments 〈gs〉 and the (pseudo)Fano factor F (in the
latter case formulas work for m > 0; for m = 0 the factor F does not
decay but approaches 1/3).

0 � m � 4 m > 4

〈g〉 1 m − 2

〈g2〉 2
3 (1 + m + m2

16 ) m(m − 4)

〈g3〉 8
15 (1 + 9m

3 + 43m2

64 + 3m3

32 + m4

1024 ) 3m2 (m−4)
4

F 2
3m (1 + m − m2

8 ) 2(m−4)
m

The short-wire limit, L � ξ , is most easily accessed via
direct perturbative solution of the Schrödinger equation for
the heat kernel [37]. Corresponding calculation is a straight-
forward generalization of the calculation in the absence of
the WZW term that can be found in Ref. [23]. The result-
ing expansions for 〈g〉, var g = 〈g2〉 − 〈g〉2, 〈〈g3〉〉 = 〈g3〉 −
3〈g2〉〈g〉 + 2〈g〉3, and F read

〈g〉 = ξ

L
+ 1

3
+
(

m2

12
− 1

15

)
L

ξ
+
(

2

63
− m2

30

)
L2

ξ 2

+ · · · , (66a)

var g = 2

15
− 8

315

L

ξ
+
(

136

4725
− 17m2

630

)
L2

ξ 2
+ · · · ,

(66b)

〈〈g3〉〉 = 8

1485

L2

ξ 2
+
(

2764m2

155925
− 120704

6449625

)
L3

ξ 3
+ · · · ,

(66c)

F = 1

3
− 4

45

L

ξ
+
(

76

945
− m2

15

)
L2

ξ 2
+ · · · (66d)

In the process of var g calculation, two leading terms propor-
tional to 1/L2 and 1/L completely cancel, as expected for
universal conductance fluctuations [40].

At arbitrary L, integrations and summations over Iwasawa
momenta in Eq. (64) should be performed numerically. The
result for the disorder-averaged conductance is presented in
Fig. 2 (it was also obtained in the PhD thesis of one of the
authors [32]). In this graph one can clearly see the crossover
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from the Drude regime at L � ξ to the peculiar regime at large
lengths. The former demonstrates the behavior typical for a
diffusive metal, where the conductance scales as 〈g〉 ∼ ξ/L
and no signatures of topological protection are visible. At very
large lengths, only contribution of the topologically protected
modes survives, as expected (m/2 for the direction-averaged
conductance). Extra contribution of unprotected modes de-
cays exponentially according to the localization scenario. To
compare the exponents of this process at different m, we plot
〈g〉 − m/2 in the logarithmical scale in Fig. 3(a). According
to Eq. (2), the localization length for nontopological modes
decreases with increasing the number of topological modes
m, leading to a quicker decay of the conductance. Finally,
at m = 0 the wire is in a critical Majorana regime, with the
conductance decaying as a power law 〈g〉 ∼ √

ξ/L [8,23].
Results for the conductance variance for a broad range

of system length L can be found in Fig. 3(b). In the
Ohmic regime at small L the variance takes a universal
m-independent value of 2/15, as expected from the theory
of universal conductance fluctuations [40]. At large L the
variance drops exponentially for m �= 0 since nontopological
modes are suppressed, while the contribution of topological
modes does not fluctuate from sample to sample.

In Fig. 3(c) we present our result for the third cumulant of
the conductance 〈〈g3〉〉 = 〈g3〉 − 3〈g2〉〈g〉 + 2〈g〉3. The curve
for the m = 0 case eventually decays ∼L−1/2 at very large
lengths L � 30 as was shown in Ref. [23]. For m �= 0 the de-
cay is exponential as expected. Remarkably, for any m, 〈〈g3〉〉
behaves as L2 at small lengths because the linear term rather
unexpectedly vanishes. A somewhat similar cancellation of
the leading contribution was reported in the weak-localization
regime for the one-dimensional geometry in Ref. [41].

The (pseudo)Fano factor for various lengths can be found
in Fig. 3(d), which is similar to the graph for the variance of
conductance. Again, in the short-length limit one observes an
m-independent finite value 1/3. This value was predicted for a
diffusive metal, described by Dorokhov bimodal distribution
of transmission eigenvalues [42]. At large lengths, all the
curves with m > 0 decay exponentially for the same reason
as for the variance: nontopological modes localize and topo-
logical contribution is quantized and thus does not contribute
to the shot noise.

VI. CONCLUSIONS

In the present paper we performed an extensive study of
superconducting quasi-1D systems of symmetry class D with
topologically protected modes. Such systems can arise at
the boundary of 2D topological superconductors with broken
time-reversal and spin-rotational symmetries. In the text, we
suggested a particular way of constructing a system with both
topological and regular modes by making an interface be-
tween two 2D samples with different values of Z-topological
index (Fig. 1). However, our results are not restricted by this
particular geometry and can be applied to any 1D system,
provided the number of conducting channels is large.

For wires of arbitrary length, we report on exact expres-
sions for the average thermal conductance, its variance, and
third cumulant, as well as the shot noise power. The average
conductance was evaluated previously in Ref. [32], where a

minimal one-replica version of the sigma model was used. In
our paper we resorted to the two-replica nonlinear supersym-
metric sigma model, which allows to access higher moments
of transport characteristics.

As was argued in Ref. [23], in principle, one can ex-
tract the full counting statistics (FCS) from the two-replica
sigma model in class D. Indeed, distribution of transmission
probabilities is expressed via the heat kernel in the vicinity
of the “supersymmetric line” θB1 = θB2 = −iθF. There is no
such line in one-replica model due to the degeneracy of the
compact sector of the theory. However, we did not present
explicit results for FCS due to a very complicated structure of
the integral representation (29) in the Iwasawa construction,
which prevents us from writing the heat kernel in an analytic
form on the supersymmetric line. Instead, we evaluated the
heat kernel in the vicinity of the origin Q = �, which suffices
to calculate a number of physical quantities mentioned above.

Our findings illustrate in detail the crossover from the
ohmic regime at small lengths to the regime of developed
localization at large lengths. In particular, we showed that
the presence of topologically protected modes enhances lo-
calization of unprotected modes. Results for the average
conductance 〈g〉 coincide with the results obtained from a
simpler (one-replica) sigma model in Ref. [32]. However, as
we obtain them from a more complicated two-replica theory,
such a coherence is an extra check for our construction.

As we study a superconducting class without a spin-
rotational symmetry, experimental verification of our results
requires thermal transport measurements. That could be a
challenging task; however, recent developments indicate that
such measurements are possible at a mesoscopic scale [43,44].
To perform disorder-averaging experimentally, one can use a
common trick of varying magnetic field or chemical potential
in a range that preserves topological state in the system but
effectively perturbs the disorder potential. This technique was
previously applied to study electrical conductance fluctuations
both in ordinary metals [40,45] and at interfaces between
topological states hosting gapless edge modes [46]. In general,
the task of implementing class D topological superconductor
experimentally is an object of the ongoing research and de-
bate. We direct the reader to Refs. [11] and [12] for further
reference and note that the predictions of our paper could be
used an additional test for topological superconductivity.

From a technical perspective, calculation of the sigma-
model heat kernel boils down to finding the radial eigenbasis
of the transfer-matrix Hamiltonian. In our previous paper [23],
we considered the class D sigma model without protected
modes, where the Hamiltonian was given by the Laplace-
Beltrami operator on the sigma-model supermanifold. Here,
topological modes described by an additional WZW term
in the sigma-model action introduce a vector potential to
the Laplacian. This vector potential has a peculiar form that
allows to identify eigenfunctions of the transfer-matrix Hamil-
tonian in the Iwasawa coordinates in a specially chosen gauge
(17). The eigenfunctions are modified by the WZW term and
additional bound states arise in the eigenbasis. In our paper,
we have demonstrated that normalization of the eigenfunc-
tions by their large-θ asymptotics provides a valid expression
in the presence of the WZW term. In the two-replica theory,
emerging bound states have a very rich structure. Even in
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the absence of the WZW term, there are two families of
eigenfunctions and a zero mode in the eigenbasis [23]. We
showed that both families give rise to a number of bound
states. Moreover, the three-parameter family produces two
subclasses of bound states that are localized in either one or
two directions in the noncompact sector.

We presented a scheme that allows to identify the bound
states algorithmically based on analytic continuation of the
heat kernel in the topological index m. This approach can be
extended to sigma models with arbitrary number of replicas
as well as to the sigma models of other symmetry classes.
From a physical perspective, increased number of replicas is
required to obtain higher order transport coefficients and their
statistics in the case, when exact solution is not available.
As to other symmetry classes, one possible generalization
would be to apply the developed method to the interface of
class C superconductors [11], which are also topological in
two spatial dimensions. Besides, we note that our scheme can
explain the bound states that were found in Ref. [37] for the
symplectic symmetry class. All in all, our findings extend the
theory of Fourier analysis on symmetric superspaces to the
case of nontrivial topology and can be useful in a number of
physical applications in systems of different symmetry.
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APPENDIX A: DERIVATION OF THE SIGMA MODEL

In this Appendix we outline a derivation of the sigma-
model action to illustrate appearance of the WZW term in
Eq. (4). To simplify some technical details, we will derive a
compact replica version of the sigma model.

We start with the 1D Hamiltonian describing nL left-
moving and nR right-moving channels with a Gaussian
disorder potential represented by an antisymmetric matrix in
the space of channels,

H = −iv

(
1nR 0
0 −1nL

)
∂

∂x
+ V (x), V = −V T , (A1)

〈Vab(x)Vcd (x′)〉 = v

nτ
[δadδbc − δacδbd ]δ(x − x′). (A2)

For simplicity, we have assumed the Fermi velocity v to be the
same in all channels. Strength of disorder is quantified by the
mean free time parameter τ and also contains the total number
of channels n = nL + nR. Antisymmetry of the Hamiltonian
(A1) implies the class D.

Fermionic action in terms of Grassmann-valued fields φ for
the above Hamiltonian has the form

S = −i(φα )†[i0 − H]φα. (A3)

Here we have included an infinitely small imaginary energy
i0 in order to average a retarded Green’s function. The replica
index α is indicated explicitly and the summation over α is
implied. Channel indices are implicit.

Using the antisymmetry of the Hamiltonian we double the
variables introducing the PH structure of the fields and define
the charge conjugation operation,

S = −iψ̄α[i0� − H]ψα, (A4)

ψ = 1√
2

(
φ

φ∗

)
, ψ̄ = 1√

2
(φ†, φT ) = ψT C, (A5)

C =
(

0 1
1 0

)
, � =

(
1 0
0 −1

)
. (A6)

Charge conjugation obeys the following antisymmetry prop-
erty for any two vectors ψ1,2:

ψ̄1ψ2 = ψT
1 Cψ2 = −ψT

2 Cψ1 = −ψ̄2ψ1. (A7)

Averaging the action with respect to the Gaussian disorder
(A2), we encounter the following four-fermionic term [here
both replica (α, β) and channel (a, b) indices are explicitly
shown]:〈

ψ̄α
a Vabψ

α
b ψ̄β

c Vcdψ
β

d

〉 = −2v

nτ
tr
(
ψβ

a ψ̄α
a ψα

b ψ̄
β

b

)
. (A8)

In deriving the last expression, we have used the identity
(A7) and represented the result as a trace in the PH space.
Replica indices are arranged such that we can extend the trace
operation to the replica space. Then it will become a trace of
the square of the matrix ψaψ̄a, which is already summed over
the repeated channel index.

We can decouple the four-fermion term with the help of
Hubbard-Stratonovich transformation by introducing an aux-
iliary matrix field Q that acts in the replica and PH spaces only

S = n

16vτ
Tr Q2

− iψ̄α

[
i0� + iv

(
1nR 0
0 −1nL

)
∂

∂x
+ iQ

2τ

]
ψα. (A9)

Now the action is again quadratic in ψ and the operator in
square brackets is almost trivial in the space of channels.
The only remaining dependence is in the sign of the kinetic
term. Let us also point out that the charge conjugation relation
between ψ and ψ̄ effectively restricts the matrix Q as

Q = −CT QT C = −Q̄. (A10)

Gaussian integration over ψ with the action (A9) yields a
square root of the determinant of the operator in brackets. The
action is then

S = n

16vτ
Tr Q2 − nR

2
Tr ln

[
i0� + iv

∂

∂x
+ iQ

2τ

]

− nL

2
Tr ln

[
i0� − iv

∂

∂x
+ iQ

2τ

]
. (A11)

At this stage we have completely eliminated the channel
space. All remaining traces operate only in the PH and replica
spaces.

Saddle point analysis of the action (A11) yields Q = ±1.
The infinitely small term i0� in the argument of the logarithm
indicates a proper arrangement of signs on the diagonal of Q.
We thus pick the saddle point solution Q = � and drop the
term i0� from the action altogether. Other possible saddle
points can be generated by rotations of �, hence the sigma-
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model manifold is parametrized as

Q = T −1�T (A12)

such that the constraint (A10) is preserved [cf. Eq. (3)].
The matrix T has the size 2n, with n being the number

of replicas, and obeys T̄ T = 1. The space of T is the group
SO(2n). (We disregard matrices T with a negative determinant
and consider only the connected part of the sigma-model
manifold as explained in the main text.) The matrix Q does
not change if we replace T → KT with any matrix K that
commutes with �. Such matrices form a subgroup of SO(2n)
that has the structure of U(n). We thus conclude that matrix
Q belongs to the coset space SO(2n)/U(n) as it should be for
class D.

To derive the sigma-model action on the saddle manifold
(A12), we expand the action (A11) in gradients assuming Q
is slowly varying in space. Usually, this gradient expansion
is done in terms of the matrix T . We will take an alternative
approach and perform the gradient expansion directly in terms
of Q to maintain an apparent gauge symmetry of the theory.
In order to do so, we first extend the definition of the matrix
Q in the auxiliary direction s such that

Q(s, x) =
{

Q(x), s = 1,

�, s = 0.
(A13)

The extended matrix Q is a smooth function of its both ar-
guments s and x and interpolates between the physical value
Q(x) for s = 1 and a chosen point � for s = 0. The physical
field Q(x) represents a closed curve on the sigma-model man-
ifold. Hence the extension (A13) is always possible since the
manifold SO(2n)/U(n) is simply connected.

Let us consider the first logarithmic term in the action
(A11). Using the extended version of the matrix Q, we write
this term in the integral form

Tr ln

(
iQ

2τ
− vp

)
= i

2τ

∫ 1

0
ds Tr

∂Q

∂s

(
iQ

2τ
− vp

)−1

.

(A14)

Here p = −i∂/∂x is the standard momentum operator. Now,
instead of the logarithm, we should expand an inverse operator
in gradients of Q. This can be done with the help of the
following identity:(

iQ

2τ
− vp

)−1

= −
(

iQ

2τ
+ vp

)(
v2 p2 + 1

4τ 2
− v

2τ

∂Q

∂x

)−1

≈ −
(

iQ

v
+ 2τ p

)(
g + g

∂Q

∂x
g+g

∂Q

∂x
g
∂Q

∂x
g

)
.

(A15)

Here we have introduced the notation

g =
(

2l p2 + 1

2l

)−1

. (A16)

The operator g is diagonal in momentum representation and
decays at the mean free path scale l = vτ in real space.

The inverse operator in the integrand of Eq. (A14) is taken
at coincident points. In order to calculate it, we need to com-
mute all ∂Q/∂x factors in Eq. (A15) to the right and then

integrate over p. Commutation is performed using the identity

Ag − gA = −2ilg

(
p
∂A

∂x
+ ∂A

∂x
p

)
g (A17)

that holds for any x-dependent function A. We see that com-
mutation with g generates derivatives in x. Hence in the very
last term of Eq. (A15), we can simply interchange the order of
factors and neglect the commutator as long as we keep only
terms with up to two derivatives in x. For the second to last
term, we will apply the identity (A17) once and then rearrange
the factors neglecting higher derivatives. This yields(

iQ

2τ
− vp

)−1

x,x

= −
∫

d p

2πv
(iQ + 2l p)

×
[

g + g2 ∂Q

∂x
− 4il pg3 ∂2Q

∂x2
+g3

(
∂Q

∂x

)2
]

= − i

2v

[
Q + lQ

∂Q

∂x
− l2 ∂2Q

∂x2

+ 3l2

2
Q

(
∂Q

∂x

)2
]
. (A18)

We substitute this result into Eq. (A14) and observe that the
first and the last terms drop out under the trace since Q anti-
commutes with any derivative of Q. The second to last term in
Eq. (A18) can be integrated by parts in x, which then allows
to integrate it over s. Gradient expansion then takes the form

Tr ln

(
iQ

2τ
− vp

)

= l

8
Tr

(
∂Q

∂x

)2

s=1

+ 1

4

∫ 1

0
ds Tr

(
∂Q

∂s
Q

∂Q

∂x

)
. (A19)

The first term in this result represents the standard kinetic
term of the sigma-model action. It explicitly depends only on
the physical value of Q at s = 1. The last term in Eq. (A19)
is more subtle. It has the standard Wess-Zumino-Witten form
defined in terms of the extended field Q(s, x). On the other
hand, it also has the form of the Pruisken topological term
for the sigma model of a quantum Hall system in the (s, x)
2D plane. The physical 1D space with s = 1 represents a
boundary to this fictitious 2D quantum Hall system. In order
to rewrite the WZW term as a function of only the physical
field, we resort to the parametrization (A12). This allows us
to write∫ 1

0
ds Tr

(
∂Q

∂s
Q

∂Q

∂x

)

= 2
∫ 1

0
ds Tr

[
∂

∂s

(
T −1�

∂T

∂x

)
− ∂

∂x

(
T −1�

∂T

∂s

)]

= 2 Tr

(
T −1�

∂T

∂x

)
s=1

. (A20)

The gradient expansion now takes its final form

Tr ln

(
iQ

2τ
− vp

)
= l

8
Tr

(
∂Q

∂x

)2

+ 1

2
Tr

(
T −1�

∂T

∂x

)
.

(A21)
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Applying the same calculation strategy to the last term of
Eq. (A11) we obtain the complete sigma-model action

S =
∫

dx tr

[
nl

16

(
∂Q

∂x

)2

+ m

4
T −1�

∂T

∂x

]
. (A22)

It exactly reproduces the compact part of the supersymmetric
action (4) from the main text.

Let us comment on the gauge invariance of this result. The
WZW term in the right-hand side of Eq. (A22) is written in
terms of T rather than Q. It may seem that a transformation
T → KT with [�, K] = 0, that does not alter Q, may change
the action of the model. This is actually not the case provided
the following two conditions are in place: (i) the coefficient in
front of the WZW term is an integer multiple of 1/4, (ii) the
field configuration T (x) is topologically trivial.

The first condition is required to ensure that the topological
term in Eq. (A19) is well defined. For the same physical field
Q(x) there are topologically distinct extensions (A13) to the
second direction s. While the topological term is invariant
with respect to small variations of Q, it can take different
values for topologically different configurations of Q(s, x).
When the prefactor of the topological term is properly quan-
tized, the action for topologically distinct configurations will
differ by an integer multiple of 2π i and hence the partition
function of the model will not depend on the particular choice
of extension. For our problem, this quantization condition is
fulfilled automatically since the difference nR − nL is always
integer.

The second condition ensures that the transformation
(A20) can be safely performed. Indeed, in Eq. (A20), we apply
the parametrization (A12) to the whole extended field Q(s, x).
The sigma-model manifold [coset space SO(2n)/U(n)] is sim-
ply connected, which allows to build the extension (A13) for
any physical field Q(x). However, this is not the case for the
group SO(2n) to which the matrix T belongs. This means that
in order to have a smooth extended field T (s, x) we should
require that the parametrization T (x) of the physical field
Q(x) is chosen such that it can be continuously deformed to
a single point, that is T (x) belongs to the trivial homotopy
class of the group SO(2n). Then a continuous transformation
of Q(x) at s = 1 to Q = � at s = 0 can be parametrized by
the corresponding smooth transformation of T (x) at s = 1
to T = 1 at s = 0. With this condition fulfilled, the gauge
symmetry of the action becomes obvious. Indeed, the WZW
term is directly identified with the Pruisken topological term
by Eq. (A20) while the latter is written explicitly in terms of
Q and hence is gauge invariant.

Let us also analyze how the action changes under a gauge
transformation. Consider a transformation

T → UT (A23)

with a matrix U that obeys ŪU = 1 and commutes with �.
The latter condition implies U is block diagonal, while the
former condition establishes a relation between the blocks,

U =
(

u 0
0 u∗

)
(A24)

with u being an arbitrary unitary matrix of size n. The transfor-
mation (A23) leaves Q invariant but changes the action (A22)

as

S → S + m

4

∫ L

0
dx tr

(
U −1�

∂U

∂x

)
= S + m

2
tr ln u

∣∣∣L
0
.

(A25)

We assume that the trajectory T (x) is closed and hence U (x)
also must be closed. Determinant of u can change its phase by
any integer multiple of 2π along such a closed trajectory. If m
is even, the action is also shifted by an integer multiple of 2π i
under the gauge transformation and hence the theory is fully
gauge invariant.

For odd values of m, gauge invariance of the theory is en-
forced provided ln det u changes by a multiple of 4π i. Earlier,
we have established an additional condition on the allowed
trajectories of T (x): the closed path T (x) should be possible
to continuously shrink to a single point. The fundamental
group of the manifold of T is π1(SO(n)) = Z2. So there are
only two topologically distinct classes of closed trajectories:
those that can be shrunk to a point and those that cannot. It
is straightforward to check that a gauge transformation (A23)
with ln det u changing by an odd multiple of 2π i maps these
two classes on to each other. Hence we conclude that our
requirement on the trajectory of T to be topologically trivial
rules out such odd gauge transformations and indeed enforces
the gauge invariance of the theory.

APPENDIX B: EVALUATION OF THE GAUGE FACTOR

In this Appendix, we explain how to resolve Eq. (27)
and express the gauged plane wave (28) in terms of Cartan
variables θi and U . This result will be used to evaluate the
isotropization formula (29).

In the main text of the paper, we use a representation of
the sigma model that renders Cartan subalgebra matrices θ̌

explicitly diagonal,

θ̌ = diag{θB1, θB2, iθF, iθF,−iθF,−iθF,−θB2,−θB1}. (B1)

At the same time, � is a unit antidiagonal matrix and hence
anticommutes with θ̂ . Both � and θ̂ change sign under charge
conjugation with the matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 −1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B2)

We start with the identity (27) between the Cartan and
Iwasawa decompositions of the matrix T ,

T = U −1eθ̌/2U = Veǎ/2N. (B3)

Let us remind that U and V belong to the K group and
commute with �, θ̌ and ǎ are Cartan and Iwasawa radial
angles, respectively, represented by diagonal matrices of the
form (B1), and N = en appears in the Iwasawa decomposition
(24) and is an upper-triangular matrix with units on the main
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diagonal. We can represent all these matrices explicitly with
the following block structure:

θ̌ =
(

θ̃ 0
0 −Rθ̃R

)
, ǎ =

(
ã 0
0 −RãR

)
, (B4a)

� =
(

0 R
R 0

)
, eǎ/2N =

(
X Y
0 Z

)
. (B4b)

Here R is a 4 × 4 antidiagonal unit matrix while θ̃ and ã are
diagonal matrices of the radial Cartan and Iwasawa angles,
respectively,

θ̃ = diag {θB1, θB2, iθF, iθF}, (B5)

ã = diag {aB1, aB2, iaF, iaF}. (B6)

The blocks X , Y , and Z contain Iwasawa coordinates and con-
stitute an upper triangular matrix eǎ/2N . So, the blocks X and
Z are themselves upper triangular and contain exponentials of
Iwasawa angles eai/2 on the main diagonal.

To resolve the identity (B3) with respect to V , we change
matrix basis such that � becomes a diagonal matrix. This
can be achieved by an orthogonal rotation with the following
matrix L:

L = 1√
2

(
1 1
R −R

)
, LT �L =

(
1 0
0 −1

)
. (B7)

In the new basis, the charge conjugation matrix C [see
Eq. (B2)] takes a block-off-diagonal form

LT CL =
(

0 −c
c 0

)
, c =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠. (B8)

Since matrices U and V commute with �, they take a block-
diagonal form in the new basis,

LT UL =
(

u 0
0 ū−1

)
, LT V L =

(
v 0
0 v̄−1

)
. (B9)

Both matrices obey the condition ŪU = V̄V = 1. This es-
tablishes a relation between diagonal blocks of U and V in
the new basis as indicted in Eq. (B9). Charge conjugation for
individual blocks is defined as ū = cT uT c with the matrix c
from Eq. (B8). Representation (B9) shows explicitly that the
matrices U and V can be fully parametrized by their upper-left
blocks and hence belong to the supergroup U(2|2). Finally, the
diagonal Cartan matrix eθ̌ acquires the following form in the

rotated basis:

LT eθ̌L =
(

cosh θ̃ sinh θ̃

sinh θ̃ cosh θ̃

)
. (B10)

The gauge factor in Eq. (27) takes especially simple form
after L rotation,

e(m/4) str(� ln V ) = sdetm/4 v sdet−m/4 v̄−1 = sdetm/2 v. (B11)

To find sdet v, we will rewrite identity (B3) in the rotated basis
and take a superdeterminant of its upper-left block. This yields

sdet cosh(θ̃/2) = sdet v sdet(X + Y R + RZR)

= sdet v

sdet eã/2
sdet(1 + RZ−1RX + RZ−1RY R).

(B12)

In the last expression we have singled out the factor
sdet(RZR) = sdet e−ã/2.

We have thus related sdet v to the Iwasawa coordinates
contained in X , Y , and Z . To express these parameters through
Cartan coordinates, consider the matrix �Q in the original
basis written in two alternative coordinate systems,

�Q = �N−1e−ǎ/2�eǎ/2N

=
(

RZ−1RX RZ−1RY

−RX −1Y Z−1RX RX −1RZ − RX −1Y Z−1RY

)

= U −1eθ̌U

= L

(
u−1 cosh θ̃u u−1 sinh θ̃ ū−1

ū sinh θ̃u ū cosh θ̃ ū−1

)
LT . (B13)

We observe that the blocks in the upper row of this matrix
are exactly those appearing in Eq. (B12). Taking these blocks
from the matrix �Q in Cartan coordinates, we express sdet v
as

sdet v = sdet eã/2

sdet[cosh(θ̃/2) + uū sinh(θ̃/2)]
. (B14)

This fully determines the phase factor in Eq. (29) in terms of
Cartan angles according to Eq. (B11).

With this result, we can rewrite the integral representation
(29) of a general eigenfunction of the transfer-matrix Hamil-
tonian in the following form:

φq(θ̌ ) =
〈

e(iq1+ m
4 )aB1+(iq2+ m

4 + 1
2 )aB2+i(l− m

2 )aF

sdetm/2[cosh(θ̃/2) + uū sinh(θ̃/2)]

〉
u

. (B15)

It remains to express the Iwasawa angles ǎ via Cartan coordi-
nates in order to perform isotropization. This can be done by
considering superdeterminants of square submatrices of �Q
in the upper-left corner as was discussed in detail in Ref. [23].
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