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Sensitivity of (multi)fractal eigenstates to a perturbation of the Hamiltonian
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We study the response of an isolated quantum system governed by the Hamiltonian drawn from the Gaussian
Rosenzweig-Porter random matrix ensemble to a perturbation controlled by a small parameter. We focus on
the density of states, local density of states, and the eigenfunction amplitude overlap correlation functions
which are calculated exactly using the mapping to the supersymmetric nonlinear sigma model. We show that
the susceptibility of eigenfunction fidelity to the parameter of perturbation can be expressed in terms of these
correlation functions and is strongly peaked at the localization transition: It is independent of the effective
disorder strength in the ergodic phase, grows exponentially with increasing disorder in the fractal phase, and
decreases exponentially in the localized phase. As a function of the matrix size, the fidelity susceptibility remains
constant in the ergodic phase and increases in the fractal and in the localized phases at modestly strong disorder.
We show that there is a critical disorder strength inside the insulating phase such that for disorder stronger than
the critical, the fidelity susceptibility decreases with increasing the system size. The overall behavior is very
similar to the one observed numerically in a recent work by Sels and Polkovnikov [Phys. Rev. E 104, 054105
(2021)] for the normalized fidelity susceptibility in a disordered XXZ spin chain.
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I. INTRODUCTION

Parametric statistics is a general term for the response of
a disordered quantum system to the variation of parameters
of a Hamiltonian. In the case of the classical Wigner-Dyson
random matrix theory (RMT) [1], one is usually interested
in the spectral response to the parameter variation—the best-
known examples are the so-called level velocity dEn/dλ and
the level curvature d2En/dλ2 [2–9], where En(λ) is the nth
eigenvalue of the Hamiltonian

Ĥ (λ) = Ĥ1 cos λ + Ĥ2 sin λ, (1)

in which Ĥ1 and Ĥ2 are drawn from certain disorder ensembles
and λ is a parameter.

For the diffusive dynamics beyond the classical RMT, the
parametric density of states (DoS) correlation function and
the level curvature distribution in the crossover between the
orthogonal and unitary ensemble was studied in Refs. [13,14]
using the formalism of the supersymmetric nonlinear sigma
model (NLSM) [15]. The dynamics of eigenvalues with λ,
which plays a role of time, is sensitive to the Anderson lo-
calization and is a generalization of the Dyson’s Brownian
motion [16] of the gas of energy levels (Pechukas gas [17])
in the classical RMT. In the delocalized phase, it exhibits
the avoided crossing of the word lines of energy levels as
functions of λ, and in the localized phase the crossing is sharp.

The dynamics of the Pechukas gas is very peculiar if the
wave functions are extended but not ergodic, obeying the
multifractal statistics [18] (as, e.g., in the point of Anderson
transition). The connection between this dynamics and the

eigenfunction statistics [19] allowed us to derive a nontriv-
ial relationship between the level compressibility χ and the
fractal dimension Dq of eigenfunctions [20].

This incomplete review of old results shows that quite a bit
is known about the spectral parametric statistics. However, by
now information on the parametric statistics of eigenfunctions,
especially for the multifractal case, is still lacking.

At the same time, the multifractal eigenfunction statistics
appears to be quite ubiquitous. Not only is it common to crit-
ical points of Anderson transitions in noninteracting systems,
a mounting evidence has emerged recently [21,22] that the
many-body localized (MBL) phase in interacting systems is
a phase with multifractal statistics of eigenfunctions in the
Hilbert space.

Recently, the nonergodic extended (NEE) phase with frac-
tal eigenfunction statistics has been shown [23] to emerge
in the simplest extension of the Wigner-Dyson (WD) the-
ory, the Gaussian Rosenzweig-Porter (GRP) random matrix
ensemble [24]. Like in the classical RMT, all matrix entries
in this ensemble are Gaussian random variables fluctuating
independently of each other around zero with the variance
that is identical for all the diagonal and off-diagonal matrix
elements. The crucial difference is that the variance of the off-
diagonal matrix elements is parametrically smaller than that
of the diagonal ones and it decreases as a certain power N−γ

of the matrix size N , while the variance of diagonal entries is
chosen to be 1. This breaks the basis-rotation invariance of the
classical RMT and allows for the nonergodic phases to emerge
in the thermodynamic limit in the special basis in which the
model is formulated.
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Despite its quite specific formulation, this random matrix
ensemble appears to have a predictive power even for the
MBL transition in interacting systems such as dirty bosons
and spin chains [22]. A particular case of this model arises
also in the quantum random energy problem [25,26], which
has important applications in quantum computing [25]. The
Rosenzweig-Porter model with logarithmically normal distri-
bution of off-diagonal entries (LN-RP) [27] has a particularly
rich two-parameter phase diagram [10,11]. It has been shown
[11] that at a certain relationship between the typical value
and the variance of the log-normal distribution LN-RP model
belongs to the same universality class as the Anderson model
on random regular graphs (RRG). The latter model is often
considered as a toy model for MBL [28–30].

Given a simplicity of the GRP model, in this paper we
study the parametric statistics of local operators in this model
with the goal of identifying the generic features intrinsic to all
random systems in its multifractal phase.

II. TARGET PROPERTIES AND REVIEW OF MAIN
RESULTS

Statistical properties of a quantum system are naturally
described by the DoS and local DoS (LDoS) pair correlation
functions:

RE (ω, λ) = δ2

〈 ∑
n,m

δ
(
E − E (0)

n

)
δ
(
E + ω − E (λ)

m

)〉
, (2)

CE (ω, λ) = (Nδ)2

〈 ∑
n,m

ρ (0)
n (r)ρ (λ)

m (r)

× δ
(
E − E (0)

n

)
δ
(
E + ω − E (λ)

m

)〉
, (3)

where N is the dimension of the Hilbert space (size of an
N × N random matrix), δ is the mean level spacing at the band
center, ρ (λ)

m (r) = |� (λ)
m (r)|2 is the density operator, � (λ)

n (r) =
〈r|n(λ)〉 is the nth eigenfunction of the Hamiltonian (1) cor-
responding to the parameter λ at a point r, and E (λ)

n is the
corresponding eigenvalue. Angular brackets 〈. . . 〉 stand for
disorder average.

Since the dependence of the correlation functions (2) and
(3) on the reference energy E is very slow, one typically con-
siders them at the band center. That will be implied throughout
the text, so we will suppress the subscript E : R(ω, λ) ≡
R0(ω, λ) and C(ω, λ) ≡ C0(ω, λ).

While the DoS correlator R(ω, λ) is determined only by
the eigenvalues, the LDoS correlator C(ω, λ) also encodes
information about the eigenfunctions. In many cases, the spec-
trum and eigenfunctions are uncorrelated. The best-known
examples are the classical RMT [1] (fully ergodic states) and
random diagonal matrices (perfectly localized states). Then
the function C(ω, λ) reproduces level repulsion features of the
DoS correlator R(ω, λ) and it is instructive to focus on their
ratio [31]:

K (ω, λ) = C(ω, λ)

R(ω, λ)
. (4)

We will show that for the GRP model, K (ω, λ), indeed, coin-
cides, in its principal detail, with the correlation function of

the density operators:

K̃ (ω, λ) = N2〈ρ (0)
m (r) ρ (λ)

n (r)
〉
, En − Em = ω (5)

(both En and Em taken close to the band center). For this rea-
son, the correlation function K (ω, λ) will be referred to as the
eigenfunction amplitude overlap (EAO) correlation function.

In this paper, we consider three types of perturbations Ĥ2 in
Eq. (1): (i) the diagonal drive when Ĥ2 is the diagonal part of
the RP random matrix, (ii) the off-diagonal drive when Ĥ2 is
the off-diagonal part of this matrix, and (iii) the local density
drive Ĥ2 = (Nδ) |r〉 〈r|.

The main effect of the diagonal drive is a random shift 	

of the entire miniband [32] of the nearly resonant states in
the local spectrum following the shift of the matrix element
Hr,r [see Fig. 1(a)]. In the case of the off-diagonal drive, the
miniband does not move as a whole. However, in both cases (i)
and (ii), the individual levels do move. At a small perturbation
strength λ, the shift of a single level manifests itself in K (ω, λ)
as the broadening of the self-correlation δ peak in K (ω, 0).
The second effect of perturbation is the suppression of level
repulsion seen as a correlation hole in C(ω, λ) and R(ω, λ) at
ω � δ, see Fig. 2.

The point of a special focus in this paper is the fidelity
susceptibility [33–35] characterizing the overlap of the bare
and perturbed wave functions averaged over all states:

χF = −∂λ2
1

N

∑
n

∣∣〈� (0)
n

∣∣� (λ)
n

〉∣∣2

λ=0. (6)

For a generic perturbation Ĥ2, the fidelity susceptibility bears
information on quantum phases. We consider the specific case
of the local density drive Ĥ2 = (Nδ) |r〉 〈r| when the respec-
tive χF is insensitive to phases of eigenfunctions and can be
expressed via the correlation function C(ω, 0). We show that
the typical fidelity susceptibility for the local density drive in
the GRP ensemble is given by

χ
(typ)
F ∼ C(δ, 0) ∼ K (δ, 0). (7)

One of the main results of the paper is the exponential
growth of the typical fidelity susceptibility χ

(typ)
F ∼ Nγ−1 as a

function of the disorder parameter γ in the fractal NEE phase
(1 < γ < 2). This result is derived analytically and confirmed
numerically. In the ergodic phase (γ < 1), the susceptibility
χ

(typ)
F is independent of γ and is much smaller than in the NEE

phase, while in the localized phase (γ > 2) it exponentially
decreases as N3−γ with increasing γ , see Fig. 1(b). The max-
imum of χ

(typ)
F (γ ) in the limit of large N is located exactly at

the localization transition γ = 2.
An important feature of the dependence of ln χ

(typ)
F on γ

in the GRP model is a symmetric character of this depen-
dence with respect to the Anderson transition point γ = 2, see
Fig. 1(b). It is instructive to compare this behavior with the
one for the log-normal RP model [27] which is equivalent to
the Anderson localization model on RRG [10,11]. In that case,
the NEE phase is only a finite-size effect, which manifests
itself in the asymmetric shape of the dependence of ln χ

(typ)
F

on γ , see Fig. 1(c). With increasing the matrix size N , the
asymmetry grows and in the limit of an infinite system one
obtains a discontinuous curve for μ(γ ) = d ln χ

(typ)
F /d ln N
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FIG. 1. Main results. (a) Schematic shift of an entire miniband of
the width � in the spectrum of LDoS, ρ

(λ)
E (r) = ∑

n |� (λ)
n (r)|2δ(E −

E (λ)
n ), consisting of a macroscopic number of states, caused by a

parametric shift of a diagonal matrix element Hrr corresponding
to the observation point r. (b) The logarithmic derivative, μ(γ ) =
d ln χ

(typ)
F /d ln N , of the typical fidelity susceptibility χ

(typ)
F ∼ K (δ, 0)

as a function of the effective disorder parameter γ [defined in
Eq. (10)] for the Gaussian Rosenzweig-Porter (GRP) model in its
ergodic, fractal, and localized phases. Blue points are the results
of exact diagonalization of corresponding random matrices [shown
is the discrete derivative d ln K (δ, 0)/d ln N between N = 1024 and
N = 2048]. The red, dashed, symmetric with respect to the Anderson
transition (AT) point γ = 2 curve is the analytical prediction. The
fractal phase at 1 < γ < 2 manifests itself in the exponential growth
∝ Nγ−1 of the typical fidelity susceptibility as a function of γ (and
power-law growth as a function of N). The fidelity susceptibility has
a maximum at the localization transition at γ = 2. In the localized
phase, the susceptibility ∝ N3−γ decreases as a function of γ but as
a function of N it shows a peculiar behavior. It grows with N for
2 < γ < 3 and decreases with N for γ > 3. In the limit N → ∞, it
is infinite for 2 < γ < 3 (light blue filling) and zero if γ > 3 (dense
blue filling). Thus, there exist two localized phases with drastically
different responses to a local perturbation. The susceptibility in the
ergodic phase is small and independent of γ . (c) The same logarith-
mic derivative μ(γ ) as a function of γ for the Rosenzweig-Porter
model with log-normal distribution of off-diagonal matrix elements
(LN-RP) in the symmetric point p = 1 which is equivalent to the An-
derson localization model on random regular graph (RRG) [10,11].
In this model, the fractal phase does not exist. As a result, the typical
fidelity susceptibility evolves with increasing N to a highly asym-
metric discontinuous curve shown by a red dashed line. The blue
lines correspond to numerical diagonalization of random matrices
drawn from LN-RP, p = 1 ensemble with N = 4096, 8192 (cyan),
and N = 8192, 16384 (blue), and taking the discrete derivative with
respect to ln N . Very similar curves are obtained for the Anderson
model on RRG and for the Heisenberg spin-1/2 chain in a random
field [12].

versus γ shown by the red dashed line in Fig. 1(c). A very
similar behavior has been obtained in Ref. [12] for the EAO
correlation function of neighboring eigenstates in RRG and in

FIG. 2. Correlation functions R(ω, λ), C(ω, λ), K (ω, λ) for the
unitary GRP ensemble in the fractal phase γ = 3/2 at �/δ = 32 and
δ = 0.0024 in the large-N limit. The plots are obtained analytically
from Eqs. (56), (61), (62). (a) Evolution of the DoS correlation func-
tion R(ω, λ) with increasing the parameter λ in Eq. (1). (b), (c) The
correlation functions R(ω, λ), C(ω, λ), K (ω, λ) at λ = π/1024 and
λ = π/256, respectively. The δ peak of level self-correlation is
progressively broadened and the level repulsion correlation hole di-
minishes in R(ω, λ) and C(ω, λ) as λ increases. The eigenfunction
amplitude overlap (EAO) correlation function K (ω, λ) demonstrates
the broadened eigenfunction self-correlation peak rectified for the
eigenvalue correlations.

the random-field spin-1/2 Heisenberg chain (cf. right panels
of Figs. 3 and 6 in Ref. [12]).

One should specially mention the scaling of the typical
fidelity susceptibility χ

(typ)
F with the system size N . The sus-

ceptibility is power-law divergent with N in the multifractal
(1 < γ < 2) and in the mildly localized (2 < γ < 3) phases,
albeit with different exponents γ − 1 and 3 − γ . However, it
vanishes in the limit N → ∞ in the strongly localized phase
for γ > 3, see Figs. 1(b) and 10.

A recent detailed study of an XXZ spin-1/2 chain in a
random field [35] revealed a picture (see Fig. 1 therein) which
is qualitatively similar to our Figs. 1(b) and 10. For small
disorder, the typical fidelity susceptibility is almost size in-
dependent and slowly varying with increasing disorder. For
intermediate disorder, it gets enhanced (blowing up with in-
creasing the system size), reaches a peak, and then falls down
at larger disorder. In the latter region, there is an apparent fixed
point W ∗ in the disorder strength W (similar to γ ∗ = 3 in our
model) such that with increasing the system size the fidelity
susceptibility grows at W < W ∗ and decreases at W > W ∗.

We present a qualitative picture explaining the two dras-
tically different regimes of N dependence of the typical
fidelity susceptibility both in the Rosenzweig-Porter model
with long-range hopping and in short-range hopping mod-
els (including interacting systems with two-body interaction
corresponding to short-range hopping in the Hilbert space).
In the Rosenzweig-Porter model, such a behavior is due to
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the nonexponential localization of typical eigenstates, while
in short-range systems it is due to the competition between
typical exponentially localized states and rare Mott’s pairs of
states [36–38] emerging as the result of hybridization of two
resonant exponentially localized states.

III. THE MODEL AND ITS MAIN PROPERTIES

The Rosenzweig-Porter model [24] is a generalization of
the WD random matrix model to the case when diagonal and
off-diagonal elements fluctuate with different strengths. Sev-
eral types of the Rosenzweig-Porter ensembles with various
distribution functions of off-diagonal matrix elements have
been considered: Gaussian [23], logarithmically- normal [27],
and power-law (Levy) [39].

In the simplest GRP model, the Hamiltonian is an N × N
Hermitian real symmetric (orthogonal ensemble, β = 1) or
complex (unitary ensemble, β = 2) random matrix. Its entries
are independent Gaussian-distributed random variables with
zero mean and variances (m 
= n):

〈H2
nn〉 = W 2, 〈|Hnm|2〉 = σ 2. (8)

Parameters W and σ , together with the matrix size N , com-
pletely specify the GRP model. In the limit of vanishing W , it
is equivalent to the usual RMT, with all the states perfectly
mixed (ergodic regime) and the average DoS given by the
Wigner semicircle with the bandwidth ERMT

BW = 2
√

Nσ . In the
limit of vanishing σ , we have a perfect localization at each site
and the DoS follows the distribution of Hnn with the dispersion
W .

Remarkably, in the GRP model, the transition from the
ergodic to the localized regime goes through an intermedi-
ate NEE phase with a fractal statistics of eigenvectors [23].
With increasing W , the crossover from the RMT to the NEE
regimes takes place at W ∼ ERMT

BW . At larger W , the off-
diagonal disorder is too weak to mix all the states and only
a part of them, M ∼ (�/W )N ∼ �/δ, participates in the for-
mation of new states from the localized orbitals. Here � is
the width of the miniband given by (energy close to the band
center implied)

�NEE =
√

2π
Nσ 2

W
= 2π

σ 2

δ
. (9)

As W increases, the number M of occupied sites in a typical
eigenvector decreases and becomes of the order of 1 when
� ∼ δ, where δ ∼ W/N is the mean-level spacing. This point
marks the localization transition.

The relevant energy scales discussed above in the ergodic,
fractal, and localized regimes are summarized in Table I. Note
that in the localized phase, the miniband collapses to a single
level, so formally the miniband width is zero. Yet the parame-
ter � in the numerator of Eq. (34) remains finite, � ∼ σ � δ,
but apparently loses the meaning of the miniband width [32].

To study the GRP model in the thermodynamic limit, N →
∞, it was suggested in Ref. [23] to use the following scaling
of off-diagonal matrix elements:

σ 2 ∝ N−γ , (10)

while keeping W independent of the matrix size N . No-
tice that so-defined γ plays a role of the effective disorder

TABLE I. The principal characteristics of the Gaussian RP
model in the three phases: the bandwidth EBW, the mean-level spac-
ing δ, and the width � of the Lorentzian in Eq. (34) (the latter in the
fractal phase has the meaning of the miniband width). Both δ and �

are calculated at the band center.

Phase Ergodic Fractal Localized

γ < 1 1 < γ < 2 2 < γ

Condition W/σ � √
N

√
N � W/σ � N N � W/σ

EBW 2
√

Nσ ∼W ∼W
δ ∼σ/

√
N

√
2πW/N

√
2πW/N

� ∼√
Nσ

√
2πNσ 2/W ∼σ

parameter determining the ratio W 2/(Nσ 2) ∝ Nγ−1 of the
disorder potential to the kinetic bandwidth.

In the thermodynamic limit, the crossovers between the
phases discussed above at a finite N turn into sharp phase
transitions at γ = 1 and γ = 2, with the ergodic, fractal,
and localized phases corresponding to γ < 1, 1 < γ < 2, and
2 < γ , respectively (see Table I). The miniband width obeys
the following scaling [32]:

� ∝
{

N (1−γ )/2, ergodic;
N1−γ , fractal.

(11)

In terms of the eigenvector statistics, the ergodic phase (γ <

1) corresponds to the uniform spread of the eigenfunction over
all sites, while in the localized phase (γ > 2) the eigenfunc-
tion is highly peaked on a single site. In the intermediate
NEE phase (1 < γ < 2), the eigenvector is fractal with an
extensive number of occupied sites which, however, consti-
tutes a vanishing fraction of all available sites. This fractal
behavior can be characterized with the help of the eigenvector
support set defined as a set of sites r, which is sufficient
for the normalization condition

∑
r∈SS |�n(r)|2 = 1 − ε to be

fulfilled with any prescribed accuracy ε � 1. The volume of
the support set in the fractal phase scales with the matrix size
as M ∼ ND, with the fractal dimension [23],

D = 2 − γ , (12)

restricted by 0 < D < 1. The sites from the support set are
nearly resonant and form a compact miniband of levels in
the energy space of the width � ∝ ND−1 [see Eq. (11)] that
vanishes in the limit N → ∞ (see Fig. 1). The eigenfunction
amplitude statistics in the ergodic phase (γ < 1) follows the
Porter-Thomas distribution PPT(x) ∝ x(β−2)/2 exp(−cx2), like
in the classical RMT [1]. The same remains true in the NEE
phase as well, provided one restricts �n(r) to the support set
[40].

In general, the amplitude of an eigenvector |�n(r)|2 =
|〈r|n〉|2 in the GRP model is well approximated by the Mon-
thus surmise introduced in Ref. [41]:

|�n(r)|2 = |Hnr |2
(En − dr )2 + (�/2)2

. (13)

Here Hnr is the off-diagonal matrix element, dr = Hrr is
the diagonal matrix element, and En is an exact eigenvalue.
In the ergodic phase and in the NEE phase at the support set,
the first term in the denominator of the Lorentzian in Eq. (13)
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|Ψr(r)|2 ≈ 1

|Ψn�=r(r)|2 ≤ N2−γ

nr

FIG. 3. A typical localized state in the GRP model. In the ther-
modynamic limit (N → ∞), the localization radius is strictly zero.

can be neglected, and one readily recovers the Porter-Thomas
distribution.

The Monthus surmise [Eq. (13)] can also be made mean-
ingful in the localized phase (γ > 2) if one identifies �/2 =
〈|Hnm|2〉1/2 ∼ N−γ /2 [32]. In this case, a wave function �n(r)
is strongly peaked at n = r (see Fig. 3), En ≈ dn, and Eq. (13)
gives |�n(r)|2 ∼ σ 2/(dn − dr )2 unless dn and dr are in res-
onance with the accuracy of σ . Since the difference dn − dr

is typically larger than δ, the amplitude of the wave function
�n 
=r (r) is typically bounded from above by

|�n 
=r (r)|2 � σ 2/δ2 ∝ N2−γ . (14)

In fact, for the majority of sites with |dn − dr | ∼ EBW ∝
N0, the wave function is much smaller: |�n(r)|2 ∼ σ 2/W 2 ∝
N−γ . The contribution of n 
= r sites to the normalization in-
tegral can be estimated as

∑
n 
=r |�n(r)|2 ∼ ∑

n 
=r σ 2/δ2(n −
r)2 ∼ σ 2/δ2 ∝ N2−γ due to fast convergence of the sum,
which effectively saturates by a finite number of levels n
adjacent to r. Hence,

1 − |�r (r)|2 ∼ σ 2/δ2 ∝ N2−γ , (15)

and in the thermodynamic limit (N → ∞) 〈r|n〉 = δnr , i.e., an
eigenvector is localized strictly on a single site at any γ > 2,
as shown in Fig. 3.

An important extension of the GRP is the LN-RP ensemble
with the tailed distribution of off-diagonal matrix elements
P(|Hnm|):

P(x) = A

x
exp

[
− ln2(x/xtyp)

2p ln(1/xtyp)

]
. (16)

The LN-RP ensemble is specified by two parameters: γ and
p. The former determines the typical value of the off-diagonal
matrix element:

H (typ) ≡ exp〈ln |Hnm|〉 ∼ N−γ /2. (17)

The parameter p controls the strength of the tail in the
distribution function Eq. (16), which becomes thicker as p
increases. In the limit p → 0, the LN-RP model approaches
the GRP, while the special choice p = 1 brings the model in
the same universality class as the Anderson model on RRG
[11]. Remarkably, for p > 0 the LN-RP model possesses a
nontrivial dynamics. For instance, the ensemble-averaged sur-
vival probability in some parameter region decays with time

as a stretch exponent [11], in contrast to a simple exponential
decay in the delocalized phases of GRP.

One can also consider [39] the Levy-RP model with a
power-law distribution P(x) = A/x1+k (the parameter k > 0)
truncated at |x| < xtyp, which is in many respects similar to
LN-RP model.

IV. FIDELITY SUSCEPTIBILITY χF AND EIGENSTATE
AMPLITUDE OVERLAP CORRELATION FUNCTION K(ω)

A. General expression for χF

The fidelity of two states |n(0)〉 and |n(λ)〉 belonging to the
Hamiltonians Ĥ (0) and Ĥ (λ) is defined as

F 2
n (λ) = |〈n(0)|n(λ)〉|2. (18)

Since the set of eigenstates |m〉 = |m(0)〉 is complete and
orthonormal, one can write

F 2
n (λ) = 1 −

∑
m 
=n

|〈m|n(λ)〉|2. (19)

To express the fidelity behavior at λ → 0 in terms of
the eigensystem of the Hamiltonian Ĥ (0), we employ the
Hellmann-Feynman relation,

〈m|∂λn〉 = 〈m|∂λĤ |n〉
En − Em

, (20)

which can be derived by differentiating the Schrödinger equa-
tion Ĥ (λ)|n(λ)〉 = En(λ)|n(λ)〉 with respect to the parameter
λ. The fidelity susceptibility defined by Eq. (6) is then given
by [33–35]

χ
(n)
F ≡ −dF 2

n

dλ2

∣∣∣∣
λ=0

=
∑
m 
=n

|〈m|∂λĤ |n〉|2
(Em − En)2

∣∣∣∣∣
λ=0

. (21)

Equation (21) is general and applies to any system.
Due to the denominator (Em − En)2 in Eq. (21), the fidelity

susceptibility χ
(n)
F is a random and strongly fluctuating func-

tion of state n. To get rid of this irregularity, one can also
define a fidelity susceptibility averaged over the spectrum in
any given realization of disorder:

χF = 1

N

∑
n

χ
(n)
F = 1

N

∑
n

∑
m 
=n

|〈m|∂λĤ |n〉|2
(Em − En)2

∣∣∣∣∣
λ=0

. (22)

In what follows, we will study this spectral-averaged fidelity
susceptibility.

B. Fidelity susceptibility for a local density drive

For further applications, we choose a specific perturbation
∂λĤ proportional to the local density operator:

∂λĤ = Nδ |r〉〈r|. (23)

Then the matrix element in Eq. (21) becomes a product of two
wave functions at the given point r:

〈m|∂λĤ |n〉 = Nδ 〈m|r〉 〈r|n〉 ≡ Nδ � (0)
m (r)� (0)∗

n (r). (24)
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As a result, the spectral-averaged fidelity susceptibility ac-
quires the form

χF = 2δ

∫ ∞

0

C(ω, r)

ω2
dω, (25)

where

C(ω, r) = Nδ
∑

n

∑
m 
=n

ρ (0)
n (r)ρ (0)

m (r)δ(ω − ωmn) (26)

and ωnm = E (0)
n − E (0)

m . Note that the ensemble-averaged
value of C(ω, r) can be expressed in terms of CE (ω, λ) defined
in Eq. (3):

〈C(ω, r)〉 =
∫

dE

Nδ
CE (ω, λ = 0) ∼ C(ω, 0). (27)

Since CE (ω, λ = 0) is weakly E dependent inside the spectral
bandwidth |E | � Nδ and is almost zero beyond it, the integral
in Eq. (27) is equal to C(ω, 0) ≡ C0(ω, 0) up to a prefactor of
order 1.

The fidelity susceptibility given by Eq. (25) is a random
quantity with some distribution function P(χF). An important
feature of this distribution is the presence of a power-law tail
at large χF, originating from the factor ω2 in the denominator
of Eq. (25). Indeed, in this regime the sum in Eq. (22) is
dominated by a single term with the smallest ωnm = |En −
Em| � δ, and P(χF) is determined by the strength of level
repulsion. With C(ω, r) ∼ ωβ , we obtain the large-χF asymp-
totics: P(χF) ∼ χ

−(3+β )/2
F . This power-law tail causes the

divergence of the ensemble-averaged fidelity susceptibility in
the localized phase (β = 0) and in the extended phase for the
orthogonal symmetry class (β = 1) (the extended phase of
the unitary symmetry with β = 2 is characterized by a finite
〈χF〉).

The maximum of the distribution function P(χF) is reached
when many terms start to be relevant in the sum in Eq. (21).
Thus, the typical value χ

(typ)
F of χF, characterized by the max-

imal probability, corresponds to the smallest |En − Em| being
of the order of the typical level spacing (that for RP models
coincides with the mean-level spacing δ). This suggests that
the typical fidelity susceptibility is given by

χ
(typ)
F ∼ δ

∫ ∞

δ

C(typ)(ω, 0)
dω

ω2
, (28)

where C(typ)(ω, 0) is the typical value of C(ω, r):

C(typ)(ω, λ = 0) = exp〈lnC(ω, r)〉. (29)

Taking into account that for ω > δ the DoS correlation
function R(typ)(ω, 0) = R(ω, 0) ≈ 1 [where R(typ)(ω, 0) cor-
responds to the typical DoS correlation function similar to
Eq. (29)], one may rewrite Eq. (28) as

χ
(typ)
F ∼ δ

∫ ∞

δ

K (typ)(ω, 0)
dω

ω2
. (30)

Now, given that the integral in Eq. (30) is dominated by the
lower limit, we arrive at

χ
(typ)
F ∼ K (typ)(δ, 0). (31)

Equation (31) applies to a generic case when K (typ)(ω, λ) does
not coincide with K (ω, λ), e.g., to the LN-RP model and for

models with short-range hopping. For the Gaussian RP model
with the tail-free distribution of off-diagonal matrix elements,
K (typ)(ω, λ) coincides with K (ω, λ), and Eq. (31) leads to the
estimate (7).

C. Parametric density correlation function at a diagonal drive
within the Monthus surmise approximation

In this subsection, we make a simple derivation of the para-
metric density correlation function K̃ (ω, λ) [Eq. (5)] based
on the Monthus surmise approximation, Eq. (13). An exact
derivation in Sec. V based on the supersymmetric NLSM
confirms the validity of this simple derivation in the fractal
phase at the energy scale |ω + λW | � δ, when level repulsion
effects can be neglected.

In both derivations, we assume the diagonal drive:

Ĥ2 = d̂ ′ = diag{d ′
n}. (32)

Let us first consider the fractal phase with the hierarchy of
scales δ � � � EBW, see Table I. Substituting Eq. (13) into
Eq. (5), we can express K̃ (ω, λ) in terms of the eigenfunction
overlap at En − Em = ω,

K̃ (ω, λ) = 4π2N2

�2

〈|Hnr |2|Hmr |2 L(dr − ω̃)L(dr )
〉
, (33)

where L(ω) = (�/2π )[ω2 + (�/2)2]−1 is a normalized
Lorentzian.

Equation (33) should be averaged over the matrix elements
Hnr , Hmr , and Hrr = dr of the Hamiltonian Ĥ1, and over the di-
agonal matrix elements d ′

r of Ĥ2 (which determine the shifted
frequency ω̃ = ω − λd ′

r); all of them are independently fluctu-
ating. The averaging over off-diagonal matrix elements gives
σ 4, while the averaging over dr is Gaussian with the variance
W 2 [Eqs. (8)]. Then using the fact that the convolution of two
Lorentzians is a Lorentzian of the double width and relying
on the relations of Table I, one obtains

K̃ (ω, λ) = 1

π

N

M

〈
�2

(ω − λd ′
n)2 + �2

〉
d ′

n

, (34)

where 〈. . . 〉d ′
n

denotes the averaging over the diagonal matrix
element d ′

n of the Hamiltonian Ĥ2, and M = �/δ is the num-
ber of states in the miniband. Note that the diagonal drive d̂ ′
in Eq. (34) should not necessarily be Gaussian.

Equation (34) remains valid in the localized phase char-
acterized by M = 1 and � ∼ σ � δ (see Table I). Since the
Monthus surmise is based on the Wigner-Weisskopf approxi-
mation [42] and the latter is valid only for times shorter than
the Heisenberg time tH = h̄/δ, Eq. (34) is justified only for
|ω̃ − λd ′

n| � δ. Therefore, in the localized phase with σ � δ

the relaxation rate � in the denominator of Eq. (34) is not
well defined and should be neglected. Then, Eq. (34) acquires
a perfectly perturbative form

K̃ (ω, λ) ∝ σ 2

(ω − λd ′
n)2

for |ω − λd ′
n| � δ, (35)

as it should be with σ being the smallest parameter of the
problem.

By the order of magnitude, Eq. (34) remains valid also
in the ergodic phase when M ∼ N , � ∼ EBW → ∞ and,
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FIG. 4. Density correlation function K̃ (ω, λ) [Eq. (34)] for � =
0.0014 and Gaussian distribution of d ′

n with the variance W 2 = 1/2π

at various values of the control parameter λ.

consequently, K̃ (ω, λ) ∼ 1. For the Gaussian distribution of
d ′

n, the density correlation function given by Eq. (34) is plotted
in Fig. 4.

Vice versa, if the density correlation function K̃ (ω, λ) is
known, then using Eq. (34) one can extract the effective dis-
tribution function Pλ(	) of the random shift 	 = λd ′

n from
the following relation:

Pλ(	) =
∫

dt

2π

G(t, λ)

G(t, 0)
eit	, (36)

where G(t, λ) is the Fourier transform of K (ω, λ).
Equation (36) is strictly derived under an assumption of the

Lorentzian-like form of the density correlator (34). Neverthe-
less, we will use it as an operational definition of Pλ(	) in a
generic situation.

D. χ
(typ)
F and its scaling in different phases

Here, based on Eqs. (7), (34), and (35), we discuss the
fidelity susceptibility and its scaling in the limit N → ∞.
Summarizing the results of Sec. IV C for K̃ (δ, 0), plugging
them into Eq. (7), and using relations of Table I, we obtain

χ
(typ)
F ∼

⎧⎨
⎩

1 ∝ N0, γ < 1
Nδ/� ∝ Nγ−1, 1 < γ < 2
N (σ/δ)2 ∝ N3−γ , 2 < γ .

(37)

To illustrate the validity of Eq. (7) in the localized phase,
one may substitute Eq. (24) into Eq. (22) and note that the
main contribution comes from m = r (the choice n = r dou-
bles the result) when �r (r) ≈ 1. Then, using the Monthus
surmise (13) for �n(r), one obtains

χF = 2Nδ2
∑
n 
=r

|Hnr |2
(Er − En)4

. (38)

For the tail-free Gaussian distribution of Hnr , the typical value
of the fidelity susceptibility, χ

(typ)
F , corresponds to the typical

minimal distance |Er − En| ∼ δ ∼ W/N , while |Hnr |2 can be
replaced by its average σ 2. Thus, we readily reproduce the
last line in Eq. (37), confirming the validity of Eq. (7) in this
particular case.

Taking the derivative of ln χ
(typ)
F with respect to ln N elim-

inates N-independent prefactors in Eq. (37), leading to the

following asymptotically exact scaling:

d ln χ
(typ)
F

d ln N
=

⎧⎨
⎩

0, γ < 1
γ − 1, 1 < γ < 2
3 − γ , 2 < γ .

(39)

This result is shown by the red dashed line in Fig. 1(b).
Note that the derivative d ln χ

(typ)
F /d ln N changes sign at a

fixed point γ ∗ = 3 which lies inside the localized phase. This
result can be traced back to the behavior of the eigenfunc-
tion amplitude, Eq. (14). Indeed, since for the GRP model
K (ω, λ) ≈ K̃ (ω, λ), both being independent of r, it follows
from Eq. (5) that

K (δ, 0) ≈ N
∑

r

〈|�m(r)|2|�m+1(r)|2〉. (40)

The leading contribution to Eq. (40) comes either from r = m
[where �r (r) ≈ 1] or from r = m + 1. Then, Eqs. (7) and (14)
provide an estimate:

χ
(typ)
F ∼ Nσ 2/δ2 ∝ N3−γ . (41)

Thus the change of sign of the logarithmic derivative
d ln χ

(typ)
F /d ln N happens when the amplitude |�|2 of one

state at a site where the adjacent in energy state is localized is
of the order of 1/N . In other words, at the fixed point γ = γ ∗
the maximal overlap

Jnm = W
∑

r

|�n(r)|2|�m(r)|2 (42)

between two different typical localized states becomes of the
order of δ,

max
m

{Jn 
=m}∣∣
γ=γ ∗ ∼ δ, (43)

with maxm{Jn 
=m} � δ for γ < γ ∗ (weaker disorder) and
maxm{Jn 
=m} � δ for γ > γ ∗ (stronger disorder).

E. Generalization to short-range hopping models: The role of
resonant Mott’s pairs

The condition (43) for the critical disorder strength where
d ln χ

(typ)
F /d ln N changes its sign was derived for the GRP

model characterized by an infinite-range hopping. In fact, it
is much more general and applies also to systems with short-
range hopping, such as the Anderson model on d-dimensional
lattices and graphs. However, in that case the meaning of
max{·} needs to be specified.

Indeed, a typical localized state in such systems has a
single localization center (“head”), with |�n(r)|2 decreasing
exponentially as r is shifting away from this center. Therefore,
two such states with a distance Rnm between their heads have
an exponentially small overlap Jnm ∼ W exp(−Rnm/ξ ), where
ξ is the localization radius. Since the typical distance between
the localization centers Rnm is of the order of the system
size L, such single-headed states make an exponentially small
contribution to K (δ, 0) and hence to the fidelity susceptibility
that would decrease with increasing L. This statement is true
provided that only typical states are considered.

On the other hand, it is known [36–38] that two reso-
nant localized single-headed states �n(r) and �m(r) may
effectively hybridize to form a Mott’s pair of bonding and
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antibonding states, �±(r) = [�n(r) ± �m(r)]/
√

2. The re-
sulting double-headed states have the level splitting 	E ∼
Jnm given by the overlap of the parent states �n(r) and �m(r).
The distance Rnm = R	E between the heads of the parent
states required to form a Mott’s pair grows with decreasing
	E as R	E ∼ ξ ln(W/	E ). Though such pairs of double-
headed states are rare, their overlap,

Jnm ≈ W

4

∑
r

{|�n(r)|4 + |�m(r)|4}, (44)

is independent of the system size. Thus the formation of
Mott’s pairs results in an exponentially large gain in the over-
lap compared to that of the parent states.

This gain makes the Mott’s pairs a serious competitor to
single-headed states for the leading contribution to K (δ, 0),
with the winner depending on the particular type of average
considered. Mott’s pairs contribution determines the far tail
of the distribution of random overlaps Jnm which dominates
in the mean K (δ, 0). However, typical states are single-
headed. Therefore taking the typical average K (typ)(δ, 0) [as
in Eq. (30)], one cuts the tail of the distribution and strongly
discriminates the contribution of Mott’s pairs. As a result, at
strong enough disorder (analogous to our γ > γ ∗), the typical
K (typ)(δ, 0) ∼ χ

(typ)
F decreases exponentially with the system

size, in contrast to the mean K (δ, 0) which always (except
for the case of one-dimensional single-particle localization)
increases with L. The reason for such an anomalous behavior
is the dominance of Mott’s pair contribution in the mean
K (δ, 0).

Indeed, it is known that if only the Mott’s pair contribution
is taken into account, the averaged K (ω, 0) would increase
with decreasing ω � δ [12,31] and hence K (δ, 0) would in-
crease with increasing the system size L. Notice that only
the pairs with the level splitting 	E = δ make a contribution
to this quantity. Notice also that R	E=δ ∝ ln(W/δ) ∼ ln N is
growing with increasing the system size. Since the probability
of forming a resonant Mott’s pair of states is proportional to
the area S = S(	E ) of a sphere of radius R = R	E in a d-
dimensional (S ∼ Rd−1) or in an ultrametric (S ∼ KR) space,
this probability for 	E = δ ∼ 1/N is increasing with the sys-
tem size. As the overlap Jnm for a Mott’s pair is independent
of the system size, the increase of probability to find a Mott’s
pair leads to an increase of the averaged K (δ, 0).

Summarizing, we can say that if the Mott’s pair contribu-
tion is dominant in K (typ)(δ, 0) ∼ χ

(typ)
F , the typical fidelity

susceptibility grows with the system size, otherwise it de-
creases with it.

The condition for the boundary between the two regimes
can be formulated in a form of Eq. (43), with the left-hand side
determined by the competition between double-headed and
single-headed states. Since the probability to find a resonant
Mott’s pair decreases with increasing the level splitting 	E ,
there should be a maximal 	E for which the contribution
of the Mott’s pairs to the typical K (typ)(δ, 0) still dominates
over that of typical single-headed states. A particular value
of 	E is system dependent, and it is the corresponding
maxm{Jn 
=m} ∼ max{	E} that enters the criterion (43) in the
case of the short-range hopping systems.

The peculiarity of the GRP model is that in this case the
localization is not exponential, contrary to models with short-
range hopping. Therefore, even typical single-headed states
may lead to both increasing and decreasing with the systems
size mean K (δ, 0) [which in the GRP model is of the same
order as K (typ)(δ, 0) ∼ χ

(typ)
F ]. Another important difference

is that in GRP the transition between the two regimes of
diverging and vanishing fidelity susceptibility is a sharp phase
transition in the limit N → ∞ rather than a crossover, as in
systems with short-range hopping.

V. ANALYTICAL RESULTS FOR PARAMETRIC
CORRELATION FUNCTIONS IN THE CASE OF

DIAGONAL DRIVE

A. General expressions in the fractal phase

In this section, we review analytical results for the DoS,
LDoS, and EAO parametric correlation functions obtained in
the framework of the supersymmetric NLSM for the unitary
GRP model in its fractal phase subject to the diagonal drive.
The validity of the NLSM is justified by the large ratio g =
ETh/δ of the Thouless energy ETh to the mean-level spacing
that allows us to neglect the longitudinal models and en-
force the sigma-model constraint Q2 = 1. In the fractal phase,
the Thouless energy is given by ETh = √

�δ [32] and hence
g = √

�/δ � 1, justifying the NLSM approach in the whole
fractal phase where � � δ (see Table I). Adopting the scaling
Eq. (10), one obtains g ∝ N1−γ /2 → ∞ as long as 1 < γ < 2.

The results we present below correspond to the limit N →
∞ and apply to the fractal phase (� � δ). They are calculated
at the band center (E � EBW and ω � EBW) and are valid for
an arbitrary value of ω/δ. The general expressions for R(ω, λ)
and

C(ω, λ) = Nδ

π�
C̄(ω, γ ), (45)

as they emerge from the formalism of the NLSM, read

R(ω, λ) = 1 + 1

2
Re

∫ 1

−1
dλF

∫ ∞

1
dλB PR eS + C(ω, λ)

N
, (46)

C̄(ω, λ) =
〈

�2

ω̃2 + �2

〉
d ′

+ Re
∫ 1

−1
dλF

∫ ∞

1
dλB

PC eS

λB − λF
,

(47)

where integration is performed over two Cartan variables λF

and λB specific to the unitary (class A) symmetry, the action
is given by

S = iπ

δ
(λB − λF)

〈
�ω̃

M̃1/2
B

〉
d ′
, (48)

and the functions PR(λB) and PC (λB) are defined as

PR =
〈
�2(� − iω̃λB)

M̃3/2
B

〉2

d ′
, (49)

PC =
〈

2M̃BλB + 3i�ω̃(λ2
B − 1)

2M̃5/2
B /�3

〉
d ′
. (50)

In these expressions,

M̃B = �2 − ω̃2 − 2i�ω̃λB, (51)
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with ω̃ = ω − λd ′ being a λ-dependent random quantity, and
the symbol 〈. . . 〉d ′ stands for averaging over the distribution
of the diagonal matrix element d ′ of the Hamiltonian Ĥ2. The
expressions provided above refine Eq. (34) at a scale of ω̃ of
the order of or less than the mean-level spacing δ.

Remarkably, the last term of Eq. (46) is exactly equal to
C(ω, λ)/N . Thus the global DoS correlation function includes
the local one, albeit as a 1/N-effect.

The formal derivation of the results (46) and (47) is given
in the Appendix.

B. DoS correlation function R(ω, λ): Smearing of the delta peak

Of special interest is the behavior of R(ω, λ) at small ω �
� since it gives a response of individual levels to perturbation.
To obtain an approximate expression in this limit, one can
neglect the last term in Eq. (46) and assume PR = 1. Then,
expanding M̃−1/2

B in the action and keeping the leading terms
in ω/� and λd ′, one obtains after the averaging over d ′:

R(ω, λ) = 1 + 1
2 Re F (x, α), (52)

where

F (x, α) =
∫ 1

−1
dλF

∫ ∞

1
dλF exp[(ix − αλB)(λB − λF)]

(53)
and we introduced two dimensionless parameters:

x = πω/δ, (54)

α = πλ2〈d ′2〉
�δ

. (55)

Integration over λF in Eq. (53) can be easily performed and
we arrive at

R(ω, λ) = 1 + Re
∫ ∞

1
dλB e−(αλB−ix)λB

sinh(αλB − ix)

αλB − ix
.

(56)
The function R(ω, λ) at various values of the control parame-
ter λ is plotted in Fig. 2(a). At λ → 0, this function approaches
the WD limit (shown by the gray dashed line)

RWD(ω) = δ(x) + 1 − (sin x/x)2, (57)

characterized by the δ-function peak of the level self-
correlation and quadratic level-repulsion RWD(ω) ∼ x2 at x �
1. At sufficiently small λ, the self-correlation peak and small-x
suppression of R(ω, λ) are still present. However, the peak
is progressively broadened and lowered as λ increases and
eventually eats up all the correlation hole, making the function
R(ω, λ) ≈ 1 essentially flat, see Fig. 2(a).

C. LDoS correlation function C(ω, λ)

Comparing Eq. (34) with Eqs. (45) and (47), we see
that K̃ (ω, λ) = C(L)(ω, λ), where C(L)(ω, λ) is the first
(Lorentzian) term in the LDoS correlation function. This term
describes the random shift of the entire miniband, following
the shift of a diagonal term in the Hamiltonian, see Fig. 1(a).
The coincidence of the two results is an indirect proof of the
Monthus surmise, Eq. (13).

At an energy scale ω̃ ∼ �, the second term in Eq. (47) is a
correction to the first one. However, at ω̃ � δ � � it becomes

significant, as it describes the shift of a single level due to
perturbation. In this region, Eq. (47) reduces to

C̄(ω, λ) = 1 + Re �(x, α), (58)

where, similar to Eq. (53),

�(x, α) =
∫ 1

−1
dλF

∫ ∞

1

λBdλB

λB − λF
exp[(ix − αλB)(λB − λF)].

(59)
To facilitate the integration in Eq. (59), we first differentiate
it with respect to ix and perform integration over λF. Then,
integration over ix can be done using the formula∫

e−λBz sinh z

z
dz = Ei[z(1 − λF)] − Ei[−z(1 + λB)]

2
, (60)

where z = −ix + αλB and Ei(x) is the exponential integral
function. Finally, one arrives at

C̄(ω, λ) = 1 + Re
∫ ∞

1
[I (λB; x, α) + I (−λB; −x, α)] dλB,

(61)
where

I (λB; x, α) = λB Ei[ix − λB(α − ix) − αλ2
B]. (62)

The function C̄(ω, λ) is plotted in Figs. 2(b) and 2(c). It also
shows a broadened self-correlation peak and the correlation
hole, the latter being essentially the same in the LDoS cor-
relation function C̄(ω, λ) and in the global DoS correlation
function R(ω, λ).

D. EAO correlation function K(ω, λ) at small λ

It is remarkable that in the function K (ω, λ), the level
repulsion features cancel out [see the inset in Fig. 2(b)]. That
supports the assumption of the statistical independence of the
eigenfunction and spectral fluctuations in the GRP model.
The function K̄ (ω, λ) − 1 ≡ C̄(ω, λ)/R(ω, λ) − 1 is strictly
positive, albeit vanishing in the limit ω � δ. Thus the effect
of spectral correlations (the correlation hole due to level re-
pulsion) is absent in K (ω, λ), so it is essentially dominated
by the eigenfunction amplitude correlations and describes the
broadened self-correlation peak. This peak represents a (not
normalized) distribution of the shift of a level at a small
perturbation. Figure 5 demonstrates that the width of the peak,
which gives a typical shift 	En = E (λ)

n − E (0)
n of an individual

level, is proportional to α1/2δ at α � 1, i.e., it is linear in the
perturbation strength λ:

	En

δ
∼ α1/2 ∼ λ〈d ′2〉1/2 Nγ /2 (1 < γ < 2). (63)

VI. NUMERICAL RESULTS

In this section, we present the results of numerical com-
putation of the parametric correlation function K̃ (ω, λ) of
the density operators [Eq. (5)]. In practice, two narrow bins
were located at energies E = ε and E = ε + ω with ε being
close to the band center. In each disorder realization, the sum
of the products ρ (0)

n (r)ρ (λ)
m (r) ≡ ρ1ρ2 of those states whose

energies E (0)
n and E (λ)

m fall in the first and second bins, respec-
tively, was divided by the product of the number of states n1

and n2 in each bin and after that averaged over GRP ensemble
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FIG. 5. Broadened self-correlation peak. The function
K̄ (ω, λ) − 1 ≡ C̄(ω, λ)/R(ω, λ) − 1 versus ω for various control
parameters λ = π/128, π/1024, π/2048, π/4096, π/8192 obtained
using Eqs. (56) and (61). The parameters of the GRP model are
N = 1024 and γ = 3/2. At a small perturbation α � 1, it has
almost a box-shaped form with a width ∼ α1/2δ and a tail ∝ ω−2

(the cyan through magenta curves). At large perturbation α � 1, the
peak approaches a Lorentzian shape (the red curve).

realizations. The scan over ε in an energy strip centered at
E = 0 and containing 1/32 of all levels was also taken to
improve statistics.

It is important that all realizations with n1 = 0 and/or
n2 = 0 were discarded from the average. For small enough
bin widths, n1,2 took predominantly only two values (0 or 1),
so all realizations with {n1, n2} = {1, 0}, {0, 1}, {0, 0} were
discarded. This procedure eliminated level correlations which
would exhibit themselves in the enhanced probability, due to
level repulsion, to detect configurations {1, 0} and {0, 1} com-
pared to {1, 1}, if all configurations were counted. If only the
realizations with {1, 1} are counted in the ensemble averaging,
the level correlations are eliminated by definition. Note that
the function K (ω, λ) defined in Eq. (4) would correspond to
averaging over all realizations of the sum of the products ρ1ρ2

divided by the average of n1n2 over all realizations.
The calculations of this section involve the numerical di-

agonalization of random matrices from the GRP ensemble of
the orthogonal symmetry, in contrast to the analytical results
of Sec. V derived for the unitary GRP. The similarity of the
numerical results for K̃ (ω, λ) to those derived analytically for
K (ω, λ) corroborates the assumption of statistical indepen-
dence of eigenfunctions and eigenvalues in GRP ensemble
and demonstrates that there is no qualitative difference in the
eigenfunction overlap statistics caused by the difference in the
symmetry class.

A. Diagonal drive

Here we present the results of numerical diagonalization
of matrices described by Eq. (1), where Ĥ1 is drawn from
the GRP ensemble governed by Eqs. (8) and Ĥ2 is an in-
dependently of Ĥ1 fluctuating diagonal random matrix Ĥ2 =
diag{d ′

n} with the same variance of diagonal elements: 〈d ′2
n 〉 =

W 2.
In Fig. 6, we plot the function K̃ (ω, λ) obtained for N =

1024, W = 1, σ 2 = 0.1N−γ , γ = 3/2 and different values of
λ. At a strong drive (the main plot), the results of numeri-
cal diagonalization are very similar to the prediction of the

K̃
(ω

,λ
)

ln ω

�8.0 �7.5 �7.0 �6.5 �6.0 �5.5

4.4

4.6

4.8

5.0

�8 �7 �6 �5 �4 �3 �2
�4

�2

0

2

4

FIG. 6. EAO for the diagonal drive. The function K̃ (ω, λ) from
the numerical diagonalization of the Hamiltonian Eq. (1) with a
diagonal Ĥ2 at N = 1024, W = 1, σ 2 = 0.1 N−γ , γ = 3/2 and λ =
π/512 (gray), π/256 (magenta), π/128 (red), and λ = 0 (black).
The arrows show the direction of evolution as λ is decreasing. Inset:
The broadened self-correlation bump in K̃ (ω, λ) at small ω for a
weak drive λ = π/2048, (blue) λ = π/4096 (green), λ = π/8192
(yellow), λ = π/16384 (orange). The self-correlation peak makes
the direction of evolution opposite to that at a strong drive on the
main plot.

Monthus surmise presented in Fig. 4. At a weak drive, the
evolution of K̃ (ω, λ) at small (fixed) ω is opposite to that of
the strong drive due to the broadened self-correlation peak
whose front is shifted to smaller values of ω as λ decreases
(see Fig. 5).

It is instructive to extract the effective distribution Pλ(	)
of level shifts 	 in the LDoS defined by Eq. (36). At the
scale 	 � �, this function gives the distribution of random
shifts of the entire miniband in the LDoS, while at 	 � δ it
gives the distribution of random shifts of an individual level.
To find Pλ(	), we compute numerically the Fourier trans-
form G(t, λ) of K̃ (ω, λ) and apply Eq. (36) performing the
discrete (inverse) Fourier transform. The result is presented
in Fig. 7 together with the corresponding analytical result
obtained from Eqs. (4), (46), and (47). Note, however, that the
analytical result is obtained for the unitary symmetry, while
the numerics is done for the orthogonal symmetry, so only a
qualitative agreement between Figs. 7(a) and 7(b) is expected.

B. Off-diagonal drive

When the diagonal matrix elements in Eq. (1) do not move,
i.e., Ĥ2 is an off-diagonal part of a matrix drawn from the
GRP ensemble and Ĥ1 is an independently fluctuating full
matrix from the same ensemble, the distribution function
Pλ(	) looks differently from the one at the diagonal drive.
First, there is no shift of the miniband as a whole that man-
ifests itself by the absence of the broad part of Pλ(	) in
Fig. 8. Remarkably, the shape of Pλ(	) [obtained by Fourier
transforming G(t, λ)/G(t, 0) found by direct numerical cal-
culations, see the inset to Fig. 8)] has the form of the Fermi
distribution,

Pλ(	) = C

1 + exp[(|	| − μ)/T ]
, (64)

where C−1 = 2T ln(1 + eμ/T ) ≈ 2μ.
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FIG. 7. Distribution of shifts in the local spectrum, Pλ(	).
(a) The result of numerical diagonalization of matrices from the or-
thogonal RP ensemble with N = 1024, W = 1, σ 2 = N−γ , γ = 3/2
(�/δ = 32), and λ = π/128, π/64, π/32. The Fourier transform
G(t, λ) of the EAO correlation function K̃ (ω, λ) expressed in terms
of eigenvectors and eigenvalues was computed directly and Fourier
transformed according to Eq. (36). (b) The analytical result obtained
by Fourier transforming K (ω, λ) given by Eqs. (4), (46), (47) and
inverse Fourier transforming according to Eq. (36). The function
Pλ(	) consists of a narrow peak at small 	 [which reflects the
broadened self-correlation peak in K (ω, λ), see the red curve in
Fig. 5] on the top of a much broader distribution of the shifts of
a miniband as a whole, see Fig. 1(a). The dashed line shows the
Gaussian fit to this distribution. The similar features are seen in the
numerical result (blue curve on the upper panel). Inset: The ratio
G(t, λ)/G(t, 0) whose inverse Fourier transform gives Pλ(	).

In the main plot of Fig. 8, the numerical result for Pλ(	)
is shown by a purple curve and the orange dashed line is the
fit by Eq. (64). As one can see, the fit is almost perfect. As
λ decreases, the width μ of the distribution and the effective
temperature T both decrease but the ratio T/μ remains small
and is likely to vanish in the limit λ → 0. This behavior is
similar to the one obtained analytically for the diagonal drive
and shown in Fig. 5, but in contrast to the diagonal drive, the
Lorentzian tail is absent at the off-diagonal drive.

To estimate the expected width of the distribution Pλ(	),
one can use Eq. (55) derived for the diagonal drive in which
the driving force, the variance 〈d ′2〉, should be replaced by∑

m〈(H2,nm)2〉 = Nσ 2 ∝ N1−γ . Then the parameter α trans-
forms to

αoff = λ2N/2, (65)

and using Eq. (63), we obtain

	En ≡ μ ∼ δ (λ
√

N ) ∼ λW N−1/2. (66)

P
λ
(Δ

)

Δ

t

G(t, λ)/G(t, 0)

(2μ)−1

1 + e(|Δ|−μ)/T
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FIG. 8. Pλ(	) for the off-diagonal drive. The result of numerical
diagonalization for the orthogonal RP ensemble with N = 1024,
W = 1, σ 2 = N−γ , γ = 3/2 and λ = π/128. The solid purple curve
is the Fourier transform according to Eq. (36) of G(t, λ)/G(t, 0)
found from exact diagonalization and shown in the inset. The dashed
orange line is the fit to the Fermi-like function (64) with μ = 0.00757
and T = 0.000585.

Hence the typical shift of the level μ for the off-diagonal drive
in the fractal phase (1 < γ < 2) is independent of γ .

Finally, we present the numerical results for the sensitivity
of the EAO correlation function δK̃ (δ, λ) at a scale ω = δ to
the change of the control parameter λ for the off-diagonal
drive. To this end, we define the EAO susceptibility according
to

χEAO = K̃ (δ, λ) − K̃ (δ, 0)

λ2
. (67)

Figure 9 demonstrates that it has the same shape as the fidelity
susceptibility shown in Fig. 1(b) and its scaling with the
matrix size N differs only by a γ -independent extra factor of
N . This extra factor can be easily understood if we evaluate
the numerator in Eq. (67) expanding the functions F (π, α)
[Eq. (53)] and �(π, α) [Eq. (59)] to the first order in α and

χ
E

A
O

1
0
−

5
χ

E
A

O

γ

γ

λ = π/1024

N = 1024
N = 2048

aN

bNγ cN4−γ

1 2 3
�5
0
5
10
15

0.5 1.0 1.5 2.0 2.5 3.0

1000

104

105

106

FIG. 9. Eigenfunction overlap susceptibility defined by Eq. (67)
and obtained from the numerical diagonalization as a function of γ .
Its scaling with N is determined by Eqs. (69) and (37), as indicated
on the plot. The shift of the maximum away from γAT = 2 is a
finite-size effect (see text). Inset: χEAO in a linear scale for N = 1024
and N = 2048, showing a shift of the maximum closer to γAT with
increasing N .

054208-11



SKVORTSOV, AMINI, AND KRAVTSOV PHYSICAL REVIEW B 106, 054208 (2022)

replacing the latter by αoff:

K (δ, λ) − K (δ, 0) ∼ K (δ, 0) αoff ∼ χ
(typ)
F αoff. (68)

Now taking αoff from Eq. (65), we obtain

χEAO ∼ Nχ
(typ)
F . (69)

This similarity (confirmed numerically in Fig. 9) implies that
not only the leading in λ2 correction to the fidelity, 1 − F 2 ≈
λ2χ

(typ)
F , but also the next in λ2 correction, λ2[K (δ, λ) −

K (δ, 0)] = λ4χEAO as functions of γ are peaked at the local-
ization transition. The apparent shift of the maximum γmax

away from the transition point γAT = 2 is a finite-size effect.
Indeed, with the constants b, c ∼ 1 defined in Fig. 9, one finds
a correction (1/2) ln(c/b)/ ln N ∼ 15% to γmax. A similar cor-
rection would appear for γmax in χ

(typ)
F if the corresponding

prefactors b̃ and c̃ are taken into account in Eq. (37). Taking
the log derivative as in Eq. (39) eliminates this correction and
brings γmax almost exactly to γAT, see Fig. 1(b). Unfortunately,
strong data scattering makes this operation impossible for
χEAO.

Equation (69) may be considered as a numerical justifica-
tion of the replacement α → αoff, with αoff given by Eq. (65),
for the small-λ expansion of fidelity F in the case of the
off-diagonal drive.

VII. CONCLUSION

In this paper, we studied the response of an isolated quan-
tum system governed by the GRP random matrix Hamiltonian
Ĥ1 to a perturbation λĤ2. In contrast to the disordered spin
chains, where a complete analytical treatment was not possi-
ble so far, our random matrix model can be exactly solved in
the region of ergodic and fractal states by the formalism of the
Efetov’s supersymmetric NLSM in the thermodynamic limit
N → ∞. This solution has a natural extension to the region of
localized states which is successfully tested numerically.

In this paper, we obtained asymptotically exact expres-
sions, Eqs. (46) and (47), for the DoS and LDoS correlation
functions in the GRP ensemble of unitary symmetry in its
fractal phase. Having calculated the EAO correlation function
given by Eq. (4), we compared it with a simple analytical
treatment based on the Monthus surmise [Eq. (13)], as well as
with the numerical simulations on the orthogonal-symmetry
version of the same ensemble. The studied correlation
functions behave qualitatively in the same way for both sym-
metries. We identified analytically the parameter α [Eqs. (55)
and (65) for different types of drives], which controls a typ-
ical shift of individual levels by a small perturbation of the
Hamiltonian.

We focus on the typical fidelity susceptibility χ
(typ)
F

[Eq. (6)] and the susceptibility of the EAO χEAO [Eqs. (67)
and (5)] to such a perturbation. We show that χ

(typ)
F and χEAO

contain essentially the same information on the effect of the
perturbation on the eigenfunction overlap.

It is demonstrated both analytically and numerically that
these susceptibilities as functions of the effective disorder
parameter γ are strongly peaked near the localization tran-
sition: they are nearly constant in the ergodic phase, increase
exponentially in the fractal phase, and decrease exponentially

FIG. 10. Sketch of the fidelity susceptibility as a function of the
effective disorder parameter γ at different system sizes (from orange
to cyan in increasing N order) in the thermodynamic limit, N → ∞.
For finite N , χ

typ
F acquires γ -dependent corrections rounding the

curves and shifting the maximum, as in Fig. 9. The plot corresponds
to Fig. 1(b) and should be compared with Fig. 1 in Ref. [35].

in the localized phase. Furthermore, in the localized phase
we identified two drastically different regimes of the behavior
of χ

(typ)
F ∼ χEAO/N with increasing the matrix size N (which

is the dimension of the Hilbert space in this problem). Both
susceptibilities grow with N for 2 < γ < 3 and decrease with
N for γ > 3, with a fixed point at γ ∗ = 3.

The overall behavior of χ
(typ)
F sketched in Fig. 10 is very

similar to the one for the scaled typical normalized fidelity
susceptibility of a true many-body system, the disordered
XXZ spin chain, studied recently by Sels and Polkovnikov
[35]. This similarity also includes the existence of an apparent
fixed point that separates the regimes of increasing and de-
creasing χ

(typ)
F with the Hilbert space dimension N . We argue

that the first regime is realized when two resonant localized
states may hybridize and form the Mott’s pair of bonding
and antibonding states with the level splitting 	E ∼ δ. The
second regime implies that such double-headed states are
rare and make a subleading contribution compared to typical
single-headed ones.

We believe that the similarity of our Fig. 1(b) and Fig. 1
of Ref. [35] is not accidental, reflecting the common physics
both in the many-body problem of disordered spin chains and
in the RP random matrix problem.
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APPENDIX: DERIVATION OF EQS. (46), (47) BY THE
EFETOV’S NLSM FORMALISM

In this Appendix, we outline the main steps in the deriva-
tion of the analytical results (46) and (47) for the DoS and
LDoS parametric correlation functions in the fractal phase
of the unitary GRP model subject to the diagonal drive. The
details will be reported elsewhere [43].

We take the variance of off-diagonal elements of the
Hamiltonian in Eqs. (8) to be σ 2 = 1/N . Then the fractal
nonergodic phase is realized for 1 � W 2 � N . In terms of
the energy scales, that corresponds to the hierarchy δ � � �
EBW ∼ W , see Table I.

To simplify calculations, it is convenient to write the GRP
Hamiltonian as a sum of a totally basis-invariant RMT part
and a diagonal contribution,

H (λ) = HRMT + d̂ cos λ + d̂ ′ sin λ, (A1)

where HRMT is a random matrix from the Gaussian unitary en-
semble with the variance of all (including diagonal) elements
〈|Hnm|2〉 = 1/N , while d̂ = diag(dn) and d̂ ′ = diag(d ′

n) are
diagonal matrices independently distributed with zero mean
and 〈d2

n 〉 = 〈d ′2
n 〉 = W 2 − 1/N (since the variance of a sum

of normally distributed random variables is additive). In the
fractal phase, the last (1/N) term is negligible that will be
assumed hereafter.

In the self-consistent Born approximation, justified in the
fractal phase since � � 	, the average Green’s function is
given by

〈GR,A
i j (E , λ)〉 = δi j

E ± i�/2
, (A2)

where the width is obtained by Fermi’s golden rule: � =
2π〈|Hi j |2〉/δ, in accordance with Table I.

The DoS and LDoS correlation functions [Eqs. (2) and (3)]
can be expressed in terms of the average product of the re-
tarded and advanced Green’s functions calculated at different
values of the control parameter λ:

Yrs(ω, λ) = 〈GR
rr (E + ω/2,−λ/2)GA

ss(E − ω/2, λ/2)〉.
(A3)

In the RP model, the matrix Yrs is characterized by two param-
eters: its diagonal (Yrr) and off-diagonal (Yr 
=s) elements. They
determine the correlators in question:

R(ω, λ) = 1

2
+ δ2

2π2
Re

[
N (N − 1)Yr 
=s + NYrr

]
, (A4)

C(ω, λ) = 1

2
+ N2δ2

2π2
Re Yrr . (A5)

To perform the average in Eq. (A3), we follow the stan-
dard Efetov’s formalism of the supersymmetric NLSM [15],
repeating the sequence of routine steps: representation of the
Green’s function via integrals over supervectors ψ , averaging
over the GUE matrix HRMT, decoupling the resulting quartic-
in-ψ term by the Hubbard-Stratonovich transformation that
introduces a 4 × 4 supermatrix Q acting in the tensor product
of the superspace (FB) and retarded-advanced (RA) space,
and taking the final Gaussian integral over ψ . We also add
a symmetry-breaking source term to the action, J = diag{Ji},
where Ji = diag(ξR

i , ξA
i ) ⊗ P̂B and P̂B projects onto the BB

sector, and define the partition function:

Z[J] =
∫

eS[Q,J]DQ. (A6)

Then the correlator (A3) is expressed as

Yrs = ∂2Z[J]

∂ξR
r ∂ξA

s

∣∣∣∣
ξ=0

. (A7)

A new ingredient in this standard RMT scheme arising for
the RP model is the presence of diagonal disorder in Eq. (A1)
that requires additional averaging. However, since after the
Hubbard-Stratonovich transformation different components
of the supervector ψi (i = 1, . . . , N) are already decoupled
and both disorder (d̂ and d̂ ′) and the source J are also diago-
nal, each component can still be averaged independently. The
action then is given by

S[Q, J] = −N�2

8
str Q2 + Sσ [Q, J], (A8)

where the last term is obtained as a sum of N independent
contributions (assuming the band center, E = 0, and lineariz-
ing for small λ):

Sσ [Q, J] =
N∑

i=1

ln〈sdet(ω̃�/2 − d + i�Q/2 + Ji )〉d,d ′ .

(A9)
Here averaging is performed over two independent Gaussian
variables d and d ′ (initially, ith components of d̂ and d̂ ′), both
with the variance W 2. Note that d ′ responsible for the drive
enters the action Eq. (A9) via a frequency shift

ω̃ = ω − λd ′, (A10)

as follows from the structure of the arguments of the Green’s
functions in Eq. (A3).

At ω = 0, λ = 0, and in the absence of sources (J = 0),
the action (A8) does not involve any nontrivial matrices
rather than Q (d enters with the unit matrix in the FB ⊗ RA
space) and therefore possesses a degenerate manifold of sad-
dle points Q = U −1�U spanning the coset U(2|2)/U(1|1) ×
U(1|1). The action of the resulting NLSM is given by
Eq. (A9).

Since we are interested in the parametric statistics at small
values of the control parameter λ � 1, the roles of d and
d ′ averaging are essentially different. The former provides
the leading contribution responsible for the formation of the
miniband, whereas the latter describes parametric correlations
in the spectrum.

In the absence of sources, the NLSM action (A9) depends
only on Cartan variables, coinciding with λF and λB in the
Efetov’s parametrization [15]. Then,

sdet(ω�/2 − d + i�Q/2) = 4d2 + M̃F

4d2 + M̃B
, (A11)

where we introduced a short-hand notation:

M̃F,B = �2 − ω̃2 − 2i�ω̃λF,B. (A12)

Averaging the superdeterminant over d , we obtain the source-
free action S ≡ S[Q, 0] given by Eq. (48).
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Calculation of the derivatives in Eq. (A7) is performed in
the Efetov’s parametrization, which contains four real vari-
ables (two Cartan coordinates, λF,B, and two angular variables)
and four Grassmann numbers. After some algebra [43], we
obtain in the leading order in N → ∞,

Yr 
=s = π2

N2δ2

∫
DQ

[
1 + (λB − λF)2PRG4

]
eS, (A13)

Yrr = 2π

Nδ�

∫
DQ

[〈
�

� − iω̃

〉
d ′

+ (λB − λF)PCG4

]
eS,

(A14)

where angular brackets stand for averaging over d ′, the func-
tions PR(λB) and PC (λB) defined in Eqs. (49) and (50) also

involve averaging over d ′, and G4 is the product of all four
Grassmann variables.

The invariant measure for integration over the manifold of
Q matrices is given by [15]∫

DQ · · · =
∫ 1

−1
dλF

∫ ∞

1
dλB

dG

(λB − λF)2
. . . , (A15)

where dG stands for the measure over four Grassmann vari-
ables (we omit integration over two angular coordinates since
the integrand does not depend on them). After integration
over dG in Eqs. (A13) and (A14), the term G4 gives unity
and various combinations of two Grassmann variables vanish
(therefore they are omitted in those equations), while the
Grassmann-free terms do contribute due to the singularity of
the measure at λF = λB = 1 (Efetov-Wegner boundary term
[15]). Collecting altogether, we arrive at Eqs. (46) and (47).
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