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Vortex core near planar defects in a clean layered superconductor
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We investigate the structure of quasiparticle states localized in a core of an Abrikosov vortex in a clean layered
superconductor in the presence of planar defects. It is shown that even a highly transparent defect opens a
minigap at the Fermi energy. Its magnitude Eg ∼ �

√
R exceeds the mean level spacing for the chiral branch

ω0 ∼ �2/EF , already for very small values of the reflection coefficient off the defect R � 1 (� is the bulk gap).
For R �

√
�/EF , formation of the minigap is accompanied by the appearance of subgap states localized along

the defect, in accordance with A. V. Samokhvalov et al., Phys. Rev. B 102, 174501 (2020). The minigap takes its
maximal value for the vortex located right at the defect, decreases with increasing the distance b from the defect,
and closes when kF b ∼ (�/ω0)

√
R. We also study various configurations of several planar defects (few crossing

planes, stars, periodic structures). Although the minigap remains, a strong commensurability effect is observed.
For two crossing planar defects, the magnitude of the minigap strongly depends on how close the intersection
angle is to a rational fraction of π .

DOI: 10.1103/PhysRevB.105.134504

I. INTRODUCTION

Vortices are responsible for low-frequency dissipation in
the mixed state of s-wave superconductors at low temper-
atures [1]. When the temperature T drops well below the
superconducting gap � and bulk quasiparticle excitations are
frozen out, entropy transfer may take place only in the vortex
core. The latter can be considered as a piece of a normal metal
with the size of the coherence length ξ and finite density of
states (DOS) at the Fermi level. Microscopic justification of
this picture was provided by Caroli, de Gennes, and Matricon
(CdGM) [2], who calculated the spectrum of excitations local-
ized in the vortex core. They obtained that in the absence of
impurities the low-energy spectral branch is given by a dense
set of equidistant levels

Eμ = μω0, (1)

with the level spacing ω0 ∼ �2/EF � � and half-integer μ

(EF is the Fermi energy and we set h̄ = 1). Equation (1)
holds in the two-dimensional (2D) case applicable for pan-
cake vortices in layered superconductors. Account of motion
along the vortex (in z direction) broadens each level Eμ into a
zone dependent on the momentum kz. For strongly anisotropic
superconductors such a broadening is small and can be ne-
glected.

The parameter μ in Eq. (1) is a half-sum of the angular
momenta of the electron and hole components of the excita-
tion. If one relaxes the constraint μ = Z + 1

2 and treats μ as a
continuous variable then the chiral branch can be considered
as a gapless fermionic zero mode [3]. Its existence is protected
by topological arguments [4] and physically is related to

vanishing of the average order parameter seen by trapped
particles due to 2π winding of its phase [5].

Disorder typically modeled by pointlike impurities breaks
the axial symmetry of the problem and leads to mixing of the
chiral states. That calls for a statistical description, which has
been extensively studied in the clean (1/τ � ω0) [6], mod-
erately clean (ω0 � 1/τ � �) [7–10], and dirty (� � 1/τ )
[11] limits, where τ is the elastic scattering time. Despite
several types of the spectral statistics have been identified, the
coarse-grained DOS averaged over a window larger than ω0 is
still 1/ω0, indicating that the chiral branch in the presence of
pointlike impurities remains (quasiclassically) gapless.

When a vortex starts moving driven by an electric current,
impurity potential in its core is being changed with time. This
is the origin of the spectral flow along the chiral branch,
leading to the heating of the vortex core and eventually to
the energy dissipation. On a quasiclassical level, the theory of
flux-flow conductivity has been developed in Refs. [12–14].
Peculiar effects related to spectrum discreteness were studied
in Refs. [6,7,15–18].

A different type of imperfections is provided by extended
defects, such as columnar defects [19–21]. Those structures
have a much more pronounced effect on the chiral branch as
they completely take low-μ excitations out of the game, lead-
ing to the formation of the minigap Eg ∼ ω0kF b, where b is the
radius of the columnar defect and kF is the Fermi momentum.
Other types of extended defects relevant for vortex pinning
and microwave absorption are grain boundaries [22,23], twin
boundaries [24,25], antiphase boundaries [26], etc.

In a recent paper, Samokhvalov et al. [27] considered
modification of the vortex-core states in a clean supercon-
ductor in the presence of a sufficiently weak planar defect
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with the normal-incidence reflection coefficient R � 1 pass-
ing through the vortex center. Solving the Bogolyubov–de
Gennes equation in the quasiclassical approximation, they
obtained that the defect breaks the continuity of the chiral
branch and opens a minigap Eg � ω0 in its spectrum, which
grows with the strength of the defect R. Another prediction
of Ref. [27] is the existence of the states localized along the
defect, which appear through a topological transition with
increasing R above 1/kF ξ . The resulting DOS structure in this
regime is quite complicated. It is characterized by the minigap
Eg ∼ �

√
R for the majority of states and the presence of a

number of subminigap states referred to as a “soft gap” in
Ref. [27].

Although quasiclassical approximation is a standard tool in
vortex physics [28], it should be applied with care. A known
issue is a controversy on the presence of a hard gap in a normal
diffusive metal proximitized by a superconductor: While the
microscopic approach based on the Usadel equation predicts
a hard gap of the order of the Thouless energy [29–31],
a trajectory-based approach leads to the soft gap [32]. The
origin of the discrepancy can be traced back to the absence of
quantum transitions between trajectories in the quasiclassical
treatment. Such transitions automatically incorporated in the
Usadel equation become essential in the low-energy (long-
time) limit and eventually lead to the hard gap formation [33].

In this paper we consider the effect of weak planar de-
fects on the quasiparticle excitations localized in the vortex
core in a clean superconductor (no impurities). Instead of
relying on the quasiclassical approach, we develop a fully
quantum-mechanical approach based on the one-dimensional
(1D) nature of the chiral branch. Then the knowledge of exact
clean wave functions [16] allows us to calculate the matrix
elements of the defect without assuming it to be small. The
resulting 1D quantum mechanics is solved either in the mo-
mentum representation or in the dual angular representation.

In order to simplify the analysis, we consider the case
of layered superconductors. Then the problem of a vortex
near a planar defect reduces to the 2D problem of a pancake
vortex near a linear defect. Assuming such a 2D geometry,
hereinafter planar defects are referred to as linear ones.

For a single linear defect passing through the vortex center,
we reproduce and clarify the results obtained by the semi-
classical trajectory approach [27]. Characterizing the defect
strength by a dimensionless parameter α ∼ (kF ξ )

√
R [for a

precise definition, see Eq. (19)], we identify two regimes:
(i) Weak defects with α � √

kF ξ open a minigap Eg ≈
αω0. In this case the whole spectrum can be determined ana-
lytically.

(ii) For stronger defects with α � √
kF ξ , the main part

of the spectrum is gapped with Eg ≈ αω0, but a number of
subgap states appear at energies En < Eg. Those are the “soft-
gap” states of Ref. [27].

This picture is illustrated in Fig. 1, where we plot the
spectrum of localized states as a function of α obtained nu-
merically for a vortex with kF ξ = 200. At α = 0 we have
an equidistant set of CdGM levels (1). One can clearly
see the opening of the gap Eg ≈ αω0 accompanied by se-
quential splitting of states with a weaker α dependence
starting at α ≈ 20 ≈ √

2kF ξ . Since the majority of states are
gapped with Eg ≈ αω0, we would like to refer to those new

FIG. 1. Positive-energy levels En for a vortex with kF ξ = 200 as
a function of the dimensionless defect strength α. One can clearly
see a linearly growing gap Eg = ω0α. At α � 20 some pairs of levels
become nearly degenerate and detach from the gapped majority of
states. Inset shows the energy difference between the lowest pair
of levels, with the sharp drop indicating the emergence of the first
pair of nearly degenerate subgap states (indistinguishable at the main
panel) at α � 20.

states as subgap states refraining from using the “soft-gap”
terminology.

Inset to Fig. 1 shows the difference E1 − E0 between the
first two levels. First it decreases nearly as E1 − E0 ∼ ω0/

√
α

due to level crowding above the minigap, with the dashed
line being the exact expression obtained from Eqs. (31) and
(32). However, at α ≈ 20 two lowest levels nearly merge, with
the splitting decaying exponentially. This corresponds to an
exponentially weak hybridization of a pair of states localized
on both sides of the defect.

We also analyze a number of more complicated config-
urations of linear defects in the vortex core, assuming α �√

kF ξ , where a simple quantum-mechanical description can
be developed. In order to study the robustness of the minigap,
we consider a vortex displaced from the linear defect at a
finite distance b. We obtain that the minigap Eg(α, b) ≈ (α −
kF b)ω0 exists as long as kF b < α. For several intersecting
linear defects, we report on a pronounced commensurabil-
ity effect, with the magnitude of the minigap being highly
sensitive to the angle between the defects and the fraction it
constitutes with π . The maximal value the minigap can take
is again Eg ∼ αω0, whereas for incommensurate angles it still
survives and is bounded from below by Eg ∼ √

αω0. Finally,
we demonstrate that the minigap persists also for periodic
structure of linear defects, though its value decreases with
decreasing the period of the defect lattice.

The paper is organized as follows. In Sec. II we map
the problem of the excitation spectrum in the core of a 2D
pancake vortex placed near a linear defect to a simple 1D
quantum mechanics, demonstrate gap opening, and determine
its dependence on the defect strength and the distance between
the vortex center and the defect. Peculiar incommensurability
effects arising at intersecting multiple defects configurations
are analyzed in Sec. III. Periodic structures of defects are stud-
ied in Sec. IV. While all the above results were obtained for
α �

√
kF ξ , in Sec. V we discuss the appearance of the subgap
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states at α �
√

kF ξ and relation to Ref. [27]. In Sec. VI we
consider the effect of the self-consistent determination of the
order parameter and show that it can be neglected. The results
obtained are discussed in Sec. VII. Important technical details
are relegated to several Appendixes.

II. PANCAKE VORTEX NEAR A LINEAR DEFECT

In this section we consider the case of a linear defect,
passing at a distance of b from the vortex center. The defect
is assumed to be weak enough, such that it does not break the
superconductor into two weakly coupled pieces and cannot
be described by the tunneling Hamiltonian approximation.
Instead, we model it by a delta-function potential [27,34]

V (r) = h̄2
κ

m
δ(r1 − b), (2)

where r = (r1, r2) and m is the electron’s mass (we assume
parabolic dispersion). The strength of the defect specified by
the parameter κ can be conveniently characterized by the
normal-incidence reflection coefficient:

R = κ
2

k2
F + κ

2
. (3)

The defect is weak provided κ � kF and hence R � 1. Below
the influence of the defect on the chiral states will be described
by the dimensionless parameter α introduced in Eq. (19).

A. CdGM states

Here, we summarize relevant information about quasi-
particle states localized in the vortex core in a clean 2D
superconductor [2]. They are obtained as eigenstates of the
Bogoliubov–de Gennes (BdG) equation [35]

H(r)	(r) = ε	(r) (4)

for a two-component (particle/hole) wave function 	(r).
Choosing the vortex order parameter in the form �(r) =
|�(r)|e−iϕ , where r and ϕ are polar coordinates, the BdG
Hamiltonian can be written as

H(r) =
(

H �(r)
�∗(r) −H∗

)
, (5)

where �(r) is the superconducting order parameter and H is
the single-particle Hamiltonian

H = 1

2m

(
p − e

c
A

)2
− EF . (6)

Here EF is the Fermi energy and A is the vector potential (that
will be neglected assuming strong type-II superconductivity).

The low-lying spectral branch of this equation given by
Eq. (1) was obtained by CdGM [2], who worked in a qua-
siclassical approximation. The wave function of the μth state
valid for all μ has the form [8]

	μ(r) = Ae−K (r)

(
Jμ−1/2(kF r) ei(μ−1/2)ϕ

Jμ+1/2(kF r) ei(μ+1/2)ϕ

)
, (7)

where the envelope e−K (r) with

K (r) = 1

h̄vF

∫ r

0
�(r′) dr′ (8)

decays exponentially at r � ξ , and A is the normalization
factor:

A2 =
[

4

kF

∫ ∞

0
e−2K (r) dr

]−1

∼ kF

ξ
. (9)

Strictly speaking, the factor A also depends on μ, but this
dependence can be neglected for Eμ � �.

The level spacing ω0 ∼ �2/EF � � is determined by the
profile of the order parameter �(r):

ω0 =
∫ ∞

0
�(r)
kF r e−2K (r) dr∫ ∞

0 e−2K (r) dr
. (10)

B. Projection to the chiral branch

Recognition that all low-energy states in the vortex core are
exhausted by the CdGM chiral branch is vital for describing of
quasiparticle rearrangement by a weak potential perturbation.
For a finite V (r), it makes it possible to reduce a complicated
BdG equation (4), which is a matrix differential equation in
2D, to a much simpler 1D problem by projecting it onto the
states of the chiral branch. In such an approach pioneered in
Ref. [8], the BdG Hamiltonian is mapped onto a matrix

Hμν = μω0δμν + Vμν, (11)

where Vμν is the matrix element of the potential V (r) in the
chiral basis (7):

Vμν =
∫

d2r 	+
μ (r)τ3	ν (r)V (r). (12)

Knowledge of the wave functions in an explicit form (7)
then allows one to calculate Vμν , thus obtaining an accurate
quantum-mechanical description of the low-energy states in
the core, free of any approximations, controlled or uncon-
trolled.

Reduction to the chiral branch is justified, provided the
energy scale of the perturbation Vμν is smaller than the bulk
gap (i.e., for disordered superconductors in the clean limit,
1/τ � � [6–8]). Otherwise, mixing of states that do not
belong to the chiral branch cannot be avoided, which requires
the use of more sophisticated techniques (that is, the dirty limit
� � 1/τ [11,14]).

The form of the clean eigenfunctions (7) suggests [8]
switching to a dual representation

ψ (x) =
∑

μ

ψμeiμx, (13)

with wave functions depending on an angular variable x. In
physical terms, this angle describes Andreev precession of a
quasiclassical trajectory in the vortex core [28]. Since angu-
lar momenta are half-integer, wave functions in the angular
representation must be 2π antiperiodic:

ψ (x + 2π ) = −ψ (x). (14)

In the dual representation, the Hamiltonian given by

H (x, y) =
∑
μν

Hμνeixμ−iyν (15)

acquires the form

H (x, y) = −iδ(x − y)ω0∂y + V (x, y). (16)
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Here the first term is due to the above-mentioned Andreev
precession, whereas the second term is the integral kernel
describing quasiparticle scattering from the potential V (r).
For the linear defect with the potential given by Eq. (2), the
corresponding kernel is calculated in Appendix A.

In the limit α �
√

kF ξ it has the following form:

V (x, y) = iαω0s(x) 2πδ(x + y), (17)

s(x) = e2ikF b sin xsign(sin x). (18)

Here we introduced a convenient dimensionless defect
strength α defined as

α = 2h̄2
κA2

mkF ω0
∼ kF ξ

√
R, (19)

where R is the normal-incidence reflection coefficient of the
defect [see Eq. (3)].

In the limit α �
√

kF ξ the width of the delta function
in Eq. (17) should be taken into account that leads to the
formation of subgap states propagating along the defect, as
discussed in Sec. V.

C. Spectral equation

In the angular representation, the eigenvalue equation is
generally of an integrodifferential form. However, the fact
that the kernel V (x, y) given by Eq. (17) contains a delta
function δ(x + y) implies that the corresponding Schrödinger
equation for the function ψ (x) takes a simple quasilocal form

−i∂xψ (x) + iαs(x)ψ (−x) = (E/ω0)ψ (x), (20)

where the effect of nonlocality is the admixture of ψ (−x) to
the chiral evolution of ψ (x).

Such a structure of the Schrödinger equation suggests that
it can be reduced to a truly local form by combining ψ (x) and
ψ (−x) into a single 2-vector (spinor)

	(x) =
(

ψ (x)
ψ (−x)

)
, (21)

a procedure resembling the Bogoliubov transformation.
Hence, one can rewrite Eq. (20) as an eigenvalue equation( −i∂x iαs(x)

iαs(−x) i∂x

)
	(x) = (E/ω0)	(x) (22)

for a certain differential matrix operator.
Due to 2π antiperiodicity of ψ (x) it is sufficient to consider

Eq. (22) at the interval x ∈ [0, π ]. By construction, the spinor
	 obeys the following constraints at the boundaries of this
interval:

	(0) = ψ (0) |+〉, 	(π ) = ψ (π ) |−〉 (23)

with

|+〉 =
(

1
1

)
, |−〉 =

(
1

−1

)
. (24)

Isolating the first derivative, one can rewrite Eq. (22) as an
evolutionary equation

∂x	(x) = ME (x)	(x) (25)

with the x-dependent matrix

ME (x) =
(

iE/ω0 αe2ikF b sin x

αe−2ikF b sin x −iE/ω0

)
. (26)

The solution of the first-order differential equation (25) can be
written as

	(x) = SE (x)	(0), (27)

where SE (x) is a time-ordered matrix exponent:

SE (x) = T exp

[∫ x

0
ME (y)dy

]
. (28)

Now using the boundary conditions (23) and utilizing the
orthogonality of the spinors (24), we arrive at the spectral
equation

〈+|SE (π )|+〉 = 0, (29)

which determines the eigenvalues E for the quasiparticle
states in the core of the vortex located near the planar defect.
Unfortunately, for a finite distance between the vortex and the
defect (b �= 0) an explicit x dependence of the matrix ME (x)
does not allow the T exponent in Eq. (28) to be calculated
analytically. The latter can be done only in the case b = 0
(vortex right at the defect), which is considered below. The
general situation is discussed in Sec. II E.

D. Vortex right at the defect (b = 0)

In this section we provide an explicit expression for the
spectrum and wave functions in the case of the linear defect
passing exactly through the center of the vortex. Although our
analysis will be based on the Schrödinger equation (20) in
the dual angular representation, it is instructive to give here
also the matrix elements of the defect line in the original
momentum representation:

V (0)
μν = 2αω0hμν

π (μ + ν)
, (30)

where hμν = 1 for odd μ + ν and hμν = 0 for even μ + ν.
The matrix V (0)

μν can be considered as a generalization of
the Hilbert matrix Hi j = 1/(i + j − 1) with i, j = 1, . . . , n to
two-side infinite case i, j = −∞, . . . ,∞.

1. Exact spectrum and gap opening

At b = 0 the matrix ME (x) defined in Eq. (26) becomes x
independent: ME = i(E/ω0)σ3 + ασ1, with σi being the Pauli
matrices. The corresponding transfer matrix SE (x) in Eq. (28)
is readily calculated and Eq. (29) then provides the energy
spectrum. It can be conveniently represented as

E = ω0

√
k2 + α2 signk, (31)

where k is a real number satisfying the following transcenden-
tal equation:

α + k cot πk = 0. (32)

The number k has the physical meaning of momentum, as it
becomes clear from the explicit form of the wave function
(37).
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FIG. 2. Energy levels for the vortex right at the defect as a func-
tion of its strength α obtained from Eqs. (31) and (32). Opening of
the minigap Eg(α) ≈ αω0 is clearly seen for α � 1. Redistribution
of the states of the chiral branch is described by the BCS-type coarse-
grained DOS (36) shown in the inset.

Equation (32) defines a discrete set of allowed momenta
kn(α) placed symmetrically around zero. For convenience, we
consider below only positive kn, which we label starting with
n = 0. Though depending on α, each kn belongs to a small
window

n + 1/2 � kn(α) < n + 1. (33)

In the absence of a defect, kn(0) = n + 1
2 is half-integer, thus

reproducing the CdGM equidistant spectrum (1).
The main feature of Eqs. (31) and (32) is the opening of the

gap in the excitation spectrum, which grows with the strength
of the defect. The exact expression for the gap is given by

Eg(α, 0) = ω0

√
k2

0 (α) + α2. (34)

According to Eq. (33), the lowest positive momentum k0(α)
cannot exceed 1. Therefore, we obtain a linear scaling of the
gap in the limit α � 1:

Eg(α, 0) = ω0[α + O(α−1)]. (35)

This linear gap growth can be distinctly seen in Fig. 2, where
we plot the spectrum as a function of the defect strength α.

2. Coarse-grained density of states

The opening of the gap is accompanied by redistribution
of many levels. In the limit α � 1, approximately α states
are strongly perturbed by the defect, and Fig. 2 demonstrates
“level crowding” at E above Eg. This effect can be described
by the coarse-grained density of states ρ(E ), which is ob-
served by replacing summation over the states by integration
over k [justified by the localization property (33)]. As a result,
the density of states takes a BCS-type form

ρ(E ) = 1

ω0
Re

E√
E2 − E2

g

(36)

(see inset to Fig. 2).
We emphasize that Eq. (36) describes gap formation for

the states of the chiral branch, and its magnitude Eg ≈ ω0α

is assumed to be much smaller than the bulk superconducting
gap �.

3. Eigenfunctions

The procedure described in Sec. II C allows us to imme-
diately write an expression for the eigenfunctions. Working
for simplicity with positive-energy states (kn > 0) and using
Eq. (27), we obtain the wave function as a combination of two
counterpropagating waves:

ψn(x) = ψn(0) ×
{

C1eiknx + C2e−iknx, 0 < x < π,

C∗
1 eiknx + C∗

2 e−iknx, −π < x < 0,
(37)

with the coefficients

C1 = kn + En/ω0 − iα

2kn
, C2 = kn − En/ω0 + iα

2kn
. (38)

The value of the overall factor ψn(0) should be determined
from the normalization condition

∫ π

−π
|ψn(x)|2 dx/2π = 1.

Using the spectral equation (32) and assuming ψn(0) positive,
we obtain

ψn(0) = kn√
(En/ω0)2 + α/π

(39)

(the last term in the denominator can typically be safely
neglected). One can show that the wave function acquires a
phase shift π (n + 1

2 ) when x is increased by π :

ψn(x + π ) = i(−1)nψn(x), (40)

generalizing the same property in the clean case [with plane-
wave functions ψn(x) = ei(n+1/2)x] to arbitrary values of α.

The two-wave structure of the eigenfunction (37) has a
simple physical interpretation. In a clean vortex, a low-energy
quasiparticle trapped in its core exhibits Andreev precession
[28]. In the angular representation that corresponds to the
plane wave eikx. A linear defect passing through the vortex
center can normal reflect a quasiparticle changing the sign of
its momentum: k → −k. Interference of such reflected waves
is responsible for the formation of the states in the presence of
the defect.

With the obtained structure of wave functions, one can eas-
ily compute the overlap of the nth eigenstate in the presence of
the defect |n〉, with the momentum eigenstate |μ〉 for a clean
vortex:

〈μ|n〉 = [1 + (−1)n+μ−1/2]αkn

π
(
k2

n − μ2
)√

(En/ω0)2 + α/π
. (41)

The state |n〉 has the largest overlap with the clean state with
the same ordinal number n and momentum μn = n + 1

2 . One
can see that this overlap is always large, bounded by 〈μn|n〉 >

2/π . For the lowest-energy state, limα→∞〈μ0|0〉 = 8/3π . It
means that for all α the exact state |n〉 is very close to the
corresponding clean state |μn〉, with a small admixture of
satellites.

It is instructive to visualize reogranization of the quasipar-
ticle states induced by the defect by looking at their wave
functions 	n(r) in real space. The wave function of the state
|n〉 is obtained by expanding over the clean chiral basis:

	n(r) =
∑

μ

〈μ|n〉	μ(r), (42)
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FIG. 3. Quasiparticle densities Pn(r1, r2) for lowest-energy states
with n = 0, 1, 2, and 5. Left: no defects, right: vertically oriented
linear defect with α = 20 passing through the vortex center. Shown
is the region with −20 < (kF r1, kF r2) < 20.

where the overlap is given by Eq. (41). Figure 3 shows the
quasiparticle density profiles for low-energy states n = 0, 1,
2, and 5 without a defect (left column) and in the presence
of a (vertical) defect with α = 20 (right column). The quasi-
particle density Pn(r) = 	†

n (r)	n(r) shows the probability of
finding an excitation (either its electron or hole component)
at a given point. Note that Pn(r) is different from the charge
density 	†

n (r)τ3	n(r), which weights electron and hole con-
tributions with different signs (τ3 is the Pauli matrix in the
Nambu space).

In Fig. 3 we see that a linear defect breaks the ax-
ial symmetry of Pn(r), which becomes corrugated in the
angular direction. Note, however, that such a rough fea-
ture of the radial structure of Pn(r) as the peak at kF r ∼
n, where n is the state ordinal number, turns out to
be stable.

FIG. 4. Positive-energy levels vs the distance b between the vor-
tex center and the linear defect of strength α = 10.

E. Vortex at a distance b from the defect

In this case, the general approach described in Sec. II C is
also formally applicable, but since the matrix ME in Eq. (26)
contains now all three Pauli matrices, the transfer matrix SE

given by the T exponent (28) cannot be evaluated in a closed
form and the spectrum cannot be obtained analytically.

Numerical results for the spectrum evolution as a function
of the parameter kF b at fixed α = 10 are represented in Fig. 4.
The minigap is maximal, Eg ≈ α, when the vortex is located
right at the defect, decreasing with the increase of b in a nearly
linear fashion until it closes approximately at kF b = α.

The phenomenon of the minigap reduction illustrated in
Fig. 4 can be explained analytically in the limiting case
of (kF b, α) � 1. In this case it is more convenient not to
use the spinor representation (20), but to reduce the orig-
inal quasilocal first-order differential equation (22) to the
local second-order differential equation. Before doing that, we
gauge out the phase factor by writing ψ (x) = eikF b sin xg(x) and
then obtain the Schrödinger equation for the function g(x) at
the interval 0 � x � π :

−g′′(x) + U (x)g(x) = 0 (43)

with the potential

U (x) = α2[1 − (t cos x − ε)2] + iαt sin x (44)

and the boundary conditions

g′(0) = α[1 − i(t − ε)]g(0), (45a)

g′(π ) = −α[1 − i(t + ε)]g(π ), (45b)

following from 2π antiperiodicity of g(x). Here we introduced
the dimensionless parameters t = kF b/α and ε = E/αω0.
Equation (43) describes quantum-mechanical motion of a par-
ticle of mass m = 1

2 in the potential U (x) at zero energy. The
spectrum of the original problem (ε) is determined by the
requirement that such a zero-energy state exists.

In the limit of large α, the last term in the potential (44) can
be neglected:

U (x) = α2[1 − (t cos x − ε)2], α → ∞ (46)
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FIG. 5. Examples of linear defects intersecting at the vortex cen-
ter: (a) two lines crossing at an angle ϕ, (b) the most symmetric
arrangement with n = 3 lines, (c) three-ray configuration.

and the boundary conditions (45) dictate vanishing of g:
g(0) = g(π ) = 0. The necessary condition for the existence
of a zero-energy state in the potential U (x) is evidently
minx U (x) < 0. Right at the defect, it gives ε > 1, defining
the position of the minigap Eg ≈ α. At finite t , the potential
U (x) becomes x dependent, with the minimal value achieved
at x = π , so we expand around it:

U (x) ≈ α2[1 − (t + ε)2 + t (t + ε)(π − x)2]. (47)

Vanishing of minx U (x) implies ε > 1 − t , thus defining the
leading b dependence of the minigap: εg = 1 − t . This qua-
siclassical estimate can be improved by taking into account
quantum motion that requires minx U (x) < 0 for the zero-
energy ground state to exist. In the limit α → ∞, the potential
U (x) is sharp and the size of the ground state is small, justify-
ing the expansion (47). Hence, we have a harmonic oscillator
problem with the frequency ω = 2α

√
t (our mass is 1

2 ). How-
ever, due to the rigid-wall boundary condition g(π ) = 0, the
ground-state energy is not ω/2 but rather 3ω/2. This gives
εg = 1 − t + 3ω/4α2, improving the above quasiclassical es-
timate estimate. In dimensional units,

Eg

ω0
≈ α − kF b + 3

2

√
kF b

α
. (48)

This formula perfectly explains why the minigap goes slightly
above the dashed line α − kF b in Fig. 4 and closes approxi-
mately at kF b = α + 3

2 .

III. INTERSECTING LINEAR DEFECTS:
COMMENSURABILITY EFFECT

In the previous section we have considered the case of
a single linear defect crossing the vortex core. Now we are
going to generalize the problem and consider a number of
different configurations with several linear defects crossing
at the vortex center (see Fig. 5). This setup corresponds to
a vortex sitting on the border of three or more grains in a
granular medium.

A. Two intersecting lines

We start with the simplest case of two linear defects in-
tersecting at an angle of ϕ at the vortex center, as shown in
Fig. 5(a). In order to construct the Hamiltonian we need to
know matrix elements from both lines. The matrix element
V (0)

μν for the vertical line is given by Eq. (30). One can easily
verify that rotation of the line by an angle ϕ results in the
appearance of a phase factor: V (ϕ)

μν = V (0)
μν ei(μ−ν)ϕ . In the dual

angular representation, this translates to the argument shift:
V (ϕ)(x, y) = V (0)(x + ϕ, y + ϕ). Using Eq. (17) with b = 0,
we obtain

V (ϕ)(x, y) = iαω0s(x + ϕ) πδ(x + y + 2ϕ), (49)

where here s(x) = sign(sin x).
As a result, the two-line version of the Schrödinger equa-

tion (20) takes the form

− i∂xψ (x) + iα1s(x)ψ (−x) + iα2s(x + ϕ)ψ (−x − 2ϕ)

= (E/ω0)ψ (x), (50)

where we assumed different defect strengths for generality.
The main difference from the original single-line problem
(20), which allowed for a local representation at the expense
of introducing a two-component spinor (21) made of ψ (x)
and ψ (−x), is that for the two-line problem such an approach
typically fails. The reason is multiple reflections from the two
lines that couple wave functions at the following arguments:

±x, ±(x − 2ϕ), ±(x − 4ϕ), . . . . (51)

Whether and where this sequence terminates (mod 2π ) de-
pends on commensurability of ϕ and π :

(i) If ϕ = (m/n)π is a rational fraction of π (coprime m
and n), then the set (51) contains 2n elements and one can
introduce a 2n-component vector 	 made of ψ taken at the
corresponding arguments. In terms of 	, Eq. (50) becomes
local and should be solved at the interval x ∈ [0, π/n]. That
can be done as described in Sec. II C.

(ii) If ϕ is an irrational fraction of π , then Eq. (50) cannot
be brought to a local form.

The simplest is the case of two perpendicular lines (ϕ =
π/2), when the Schrödinger equation reduces to a local form
in terms of a four-component vector 	. Its analysis per-
formed in Appendix B 1 allows us to determine the spectrum
at arbitrary α1 and α2 by solving the transcendental equa-
tion (B7) similar to Eq. (32). In the limit of strong defects,
the minigap is given by Eg = ω0

√
α2

1 + α2
2 .

Although the same analysis can be formally done for any
rational ϕ/π = m/n, the transcendental spectral equation be-
comes more and more complicated. However, the asymptotic
behavior of the minigap at large αi can be obtained in a
closed form, as it does not rely on the knowledge of momenta.
We calculate it in Appendix B 2, arriving at the following
asymptotic expression:

Eg = ω0

√
α2

1 + α2
2 − 2α1α2 cos(π/n), (52)

which depends only on the denominator n of ϕ/π .
For an arbitrary crossing angle ϕ, Eq. (50) should be solved

numerically. In the symmetric case α1 = α2 = α, the results
are presented in Fig. 6, which shows the ratio Eg/αω0 as
a function of ϕ for various values of the defect strength α.
Figure 6 has a number of remarkable features:

(i) The appearance of peaks at commensurate angles ϕ =
(m/n)π , which become more pronounced and sharper with
increasing α.

(ii) The presence of a nearly constant nonzero background
for “not very rational” angles well described by the empirical
formula Ebg

g /αω0 ≈ 2/
√

α.
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FIG. 6. Normalized minigap energy Eg/αω0 for two identical
intersecting lines as a function of the crossing angle ϕ [see Fig. 5(a)]
for different values of the defect strength α.

(iii) Independence of the peak height (once resolved) on
the numerator m.

This picture is consistent with the minigap asymptotics
(52) with the the following limiting dependence:

lim
α→∞

Eg(ϕ)

αω0
= 2 sin

(π

2
popcorn

ϕ

π

)
. (53)

Here popcorn(x) is the Thomae’s function (also referred to as
the popcorn function), which takes zero value for irrational x
and 1/n for rational x = m/n (with m and n coprime). Dashed
lines in Fig. 6 are drawn with the help of Eq. (53) along a
number of the principal peaks of the Thomae’s function.

Equation (53) predicts that peak heights at commensurate
angles Eg[(m/n)π ] ∼ αω0/n grow linearly with the defect
strength α. However, due to the presence of a finite back-
ground Ebg

g ∼ √
αω0, only peaks with n � √

α can be actually
resolved. We emphasize that the energy scale Ebg

g ≈ 2
√

αω0

also grows with α, but as a square root (this growth can be
accidentally overlooked in Fig. 6, where Eg is normalized by
α). Hence, the value of 2

√
αω0 provides a lower bound for the

minigap at arbitrary angles.
In order to qualitatively understand the origin of the back-

ground minigap energy Ebg
g and its α dependence, we recall

that the minigap at a commensurate angle ϕ = (m/n)π can
be written as Eg =

√
λ2

min + k2
0 ω0. In physical terms, λmin and

k0 (which both are functions of α and n) provide the contri-
butions of the potential and kinetic energy to the minigap,
respectively. Here λmin = λ(q1) is the minimal positive eigen-
value of the matrix iR in Appendix B 2, which determines the
gap asymptotics via Eg = λminω0 [cf. Eq. (52)]. The parameter
k0 is the first positive solution of the transcendental spectral
equation, in an explicit form given by Eq. (32) for one line
and (B7) for two perpendicular lines. One can easily show
that limα→∞ k0(α) = 1 for one line and limα→∞ k0(α) = 2
for two perpendicular lines. Thus, we see that k0 grows with
the denominator of ϕ/π and it is natural to assume that
limα→∞ k0(α) ∼ n. Now comparing the decreasing potential-
energy contribution λmin = λ(q1) ∼ α/n with the increasing
kinetic-energy contribution k0 ∼ n we obtain that they be-
come comparable at n ∼ √

α, when Eg just coincides with

obtained background minigap level Ebg
g . We believe the above

arguments qualitatively explain the relevance of the kinetic
energy in the background minigap formation and provide an
estimate for its magnitude.

B. Several intersecting lines

For completeness, we also discuss the case of the most
symmetric configuration of n identical lines of strength α

intersecting at the vortex center at the angle of ϕ = π/n [see
Fig. 5(b)] . The Schrödinger equation, which now takes into
account scattering from n lines, may be brought to a local
form by introducing a 2n-component vector 	 in the same
manner as described above. The asymptotic minigap behavior
at α � 1 can be obtained by the method developed in Ap-
pendix B 2. After some algebra, we obtain

Eg = αω0 ×
{

1, n odd
1/ cos(π/2n), n even.

(54)

Surprisingly, the minigap remains of the order of αω0

regardless of the number of intersecting lines. The fact that
it does not scale with a naive estimate of “the overall defect
strength” nα is a consequence of destructive interference of
waves multiply scattered from different defects. At the same
time, periodicity of the structure ensures that the minigap is
not destroyed completely but remains finite with Eg ≈ αω0.
Addition of any imperfections would spoil this picture and
suppress Eg, presumably not completely but at least to the
level of

√
αω0.

C. Three rays

Finally we address the three-ray configuration depicted in
Fig. 5(c), which mimics a contact of three grains. All half-line
defects are assumed to have the same strength per unit length
α. The vortex center is located at the rays’ intersection point.
The matrix elements of the ray defect V (r) ∝ δ(r1)θ (r2) are
different from those of the linear defect V (r) ∝ δ(r1) and are
calculated in Appendix A 3. In the angular representation
they become essentially nonlocal [Eq. (A11)]. This makes
it impossible to obtain an analytic solution, and we perform
numeric analysis in the μ representation [Eq. (A12)].

We consider two configurations, symmetric with the angles
between the rays equal 2π/3 and distorted with the angles
2π/3 and 2π/3 ± 0.2, and study the spectrum as a function
of the defect strength α. The results for the corresponding
minigaps are shown in Fig. 7. In the symmetric case we
obtain a linear scaling Eg ≈ αω0, whereas the minigap in the
distorted geometry is suppressed, growing approximately as√

α for large α.
The fact that already a small rotation of one ray by an angle

0.2 leads to a significant minigap suppression, which becomes
more pronounced in the limit α → ∞, is fully consistent
with the commensurability effect for two intersecting lines
discussed in Sec. III A: For rational angles with significantly
small denominators, the minigap Eg ∼ αω0. Otherwise, de-
structive interference from different lines suppresses it to a
background level of Ebg

g ∼ √
αω0.

Inset to Fig. 7 shows the spectrum En (its positive part)
vs ordinal number n for the symmetric (blue circles) and
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FIG. 7. Normalized minigap Eg/αω0 in the three-ray configura-
tion [see Fig. 5(c)] as a function of α. Upper line: symmetric star
with all angles 2π/3; lower line: distorted star with one ray rotated
by 0.2 rad. Inset: energy levels En vs n in the symmetric (blue points)
and distorted (orange boxes) configurations at α = 20.

distorted (orange boxes) configurations at α = 20. Although
the energy E0 of the lowest level (and thus the minigap) in
the distorted case is already significantly reduced compared to
αω0, only few levels visibly change their position compared
to the symmetric case. Therefore, the coarse-grained density
of states will still have a BCS singularity (36) at E = αω0,
with a small fraction of “subgap states” with E < αω0.

IV. PERIODIC STRUCTURES OF DEFECTS

A. Square arrays of linear defects

Keeping in mind connection to granular systems, we con-
sider here a square grid of potential lines with the period
a and the vortex center at one of the grid nodes. One can
ask whether destructive interference from different lines can
suppress and/or totally destroy the minigap.

The matrix elements of the grid Vμν can be calculated
following the procedure described in Secs. II B and III A. The
resulting minigap obtained numerically is shown in Fig. 8 (for

FIG. 8. Minigap in the case of the square lattice of linear defects
as a function of the ratio of the lattice period a to the superconducting
coherence length ξ . Defect strength α = 20, kF ξ = 200.

FIG. 9. Positive-energy levels for a 1D lattice of pointlike im-
purities (55) as a function of the lattice period a. Defect strength
α = 10.

α = 20 and kF ξ = 200). It reaches its asymptotic value Eg =√
2αω0 [see Eq. (52)] at a � ξ and gradually decreases with

the decrease of the lattice period. Nevertheless, Eg remains of
the order of αω0 in a broad range of a/ξ , with a visible sup-
pression at a < ξ/4. Thus, we conclude that the phenomenon
of the minigap opening is observed for periodic structures as
well, provided that the lattice period much exceeds the Fermi
wavelength.

B. Approximating defect line by point defects

It was mentioned in the Introduction that the minigap does
not appear in the presence of pointlike impurities. On the
other hand, a linear defect can be formally considered as a
dense pack of weak pointlike impurities. To study a crossover
from the linear defect to such an array of pointlike defects, we
consider the following model potential:

V (r) = h̄2
κa

m

∑
n

δ(r1)δ(r2 − na). (55)

When its period a vanishes, it reproduces the linear defect
potential (2).

The energy spectrum obtained numerically is shown in
Fig. 9. It demonstrates a distinct transition between the gapped
and gapless phases taking place at kF a = π . One can provide
the following qualitative explanation of this phenomenon.
For a pointlike defect, an incident wave is scattered in all
directions, whereas the linear defect acts like a mirror. If
kF a < π , the waves reflected from adjacent pointlike de-
fects are coherent and interfere with each other: the lattice
acts like a diffraction grating. Otherwise, the waves re-
flected from adjacent point defects are incoherent, and no
minigap opens.

V. REGION α � √
kFξ: SUBGAP STATES AND “SOFT GAP”

OF REF. [27]

Having analyzed various defect configurations, now we
come back and revisit the simplest case of a single defect line
passing through the vortex center. On one hand, there is a suf-
ficiently transparent derivation of the matrix element V (x, y)
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leading to the delta-function expression (17). The resulting
quantum mechanics studied in Sec. II D is rather simple and
does not contain any knowledge of the parameter kF ξ . On the
other hand, Fig. 1 obtained using the exact matrix elements
Vμν , in accordance with Ref. [27], clearly demonstrates the
existence of a different regime at α �

√
kF ξ , with a number

of states sequentially splitting off the majority of gapped
states. In the language of quasiclassical trajectory analysis
of Ref. [27], appearance of those states is associated with
a topological transition in the phase space. They correspond
to special trajectories, which do not precess but are aligned
along the defect. Below we discuss how this effect can be
understood in terms of the quantum mechanics developed in
Sec. II D.

A mechanism responsible for the breakdown of a simple
picture discussed in Sec. II is smearing of the delta func-
tion δ(x + y) in Eq. (17) for the matrix element V (x, y).
This formula was obtained from the exact expression (A8)
by neglecting the envelope factor e−2K . If it is not ne-
glected, the delta function in Eq. (A9) will acquire a finite
width of the order of 1/ξ , and the delta function δ(x + y)
in Eq. (17) will be smeared by an x-dependent amount
of 1/kF ξ | sin x|. Since kF ξ � 1, this smearing is typically
small except for very small angles |x| � x∗, where x∗ =
1/

√
kF ξ . Hence, at x, y ∼ x∗ the matrix element V (x, y)

should be considered as an integral kernel, while outside of
this interval it can be approximated by the delta-function
form (17).

Sequential splitting off the subgap state taking place at
α �

√
kF ξ corresponds to the appearance of new types of

eigenstates of the Hamiltonian −i∂x + V , which are localized
either at x ∼ x∗ or at |x − π | ∼ x∗. The fact that their energy
is smaller than αω0 indicates that the wave functions of these
states have an imaginary momentum and decay exponentially
away from the mentioned vicinities of 0 and π . The expo-
nentially small energy difference between these states seen
in the inset to Fig. 1 is a consequence of exponentially weak
hybridization of the states at 0 and at π .

Figures 10(a) and 10(b) provide the snapshots of the quasi-
particle density Pn(r) for the pair of lowest-energy subgap
states at α = 30. These states are clearly aligned along the
linear defect and can be considered as symmetric and anti-
symmetric combinations of the states localized to the left and
to the right from the defect, as shown Figs. 10(c) and 10(d).
At the same time, Figs. 10(e) and 10(f) show the quasipar-
ticle density for the third and fourth positive-energy states
at α = 30. Note that they look pretty similar to the pair of
lowest-energy states in Figs. 3(e) and 3(f). It means that the
behavior of the majority of the states is almost insensitive to
the existence of the subgap states and still can be described
by the simple theory developed in Sec. II. Such a situation is
consistent with separation of the phase space into two regions
reported in Ref. [27].

To conclude this section, we emphasize that though
our fully microscopic quantum-mechanical analysis con-
firmed the existence of subgap states propagating along the
defect at α �

√
kF ξ , their description in terms of the de-

veloped formalism is rather complicated. We believe the
trajectory-based approach [27] is more suitable for this
purpose.

FIG. 10. Quasiparticle densities Pn(r1, r2) for the states shown in
Fig. 1 at α = 30: (a), (b) lowest pair of subgap states [which can
be considered as symmetric and antisymmetric combinations of the
states localized to the left (c) and to the right (d) of the linear defect],
(e), (f) next two states. Shown is the region with −100 < kF r1 < 100
and −300 < kF r2 < 300 for (a)–(d), and −20 < (kF r1, kF r2) < 20
for (e) and (f). Vortex size is specified by kF ξ = 200.

VI. EFFECT OF �(r) DISTORTION

In our consideration above, the profile of the order pa-
rameter �(r) was assumed to be unchanged by the linear
defect. The same approximation was used in Ref. [27].
However, since the order parameter should be determined
self-consistently, modification of the quasiparticle spectrum
does have an impact on �(r) (in particular, it loses its ax-
ial symmetry). Deformation of the order parameter, in turn,
affects the quasiparticle states, which therefore should be
determined self-consistently. However, such a procedure is
rather complicated and in a nonuniform vortex geometry is
nearly intractable. Nevertheless, it often happens that a direct
effect of a perturbation is more important that the accompany-
ing effect of �(r) modification.

Assuming this is also the case for our problem with a
linear defect, we can treat the effect of �(r) distortion pertur-
batively. We take the quasiparticle states obtained above for
the clean order parameter �0(r) and substitute them to the
self-consistency equation to obtain the next iteration for the
order parameter �1(r). Then the difference δ�(r) = �1(r) −
�0(r) is considered as a perturbation in the BdG equation (4)
and the correction to the minigap �Eg is obtained.

This procedure is performed in Appendix C. We obtain
that for α > 10 the minigap shift nearly saturates at �Eg ≈
0.1 × 4πgA4/k2

F , where g is the BCS coupling constant. Using
a model dependence of the vortex order parameter �(r) =
�0r/

√
r2 + ξ 2, we obtain for α > 10

�Eg

ω0
≈ 0.5 ν0g, (56)
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where ν0 is the normal-state DOS at the Fermi level. In the
BCS theory, the dimensionless coupling constant ν0g < 1.
Since the minigap grows with α as Eg = αω0, we conclude
that the distortion of the order parameter does not have a
significant effect on the quasiparticle excitation spectrum.

VII. DISCUSSION AND CONCLUSION

In this paper, we report on extensive studies of the quasi-
particle states localized in the pancake vortex in a clean 2D
superconductor in the presence of one or several linear defects
(that corresponds to a vortex in a layered 3D superconductor
with planar defects).

In the configuration with one linear defect passing through
the vortex center, we identify two different regimes separated
by α ∼ √

kF ξ . For sufficiently weak defects with α �
√

kF ξ ,
the spectral problem can be solved exactly. The spectrum is
characterized by a minigap growing as Eg = αω0 for α � 1
and the BCS-type DOS (36) above the minigap. The wave
functions in this regime are localized in the angular momen-
tum (μ) representation and delocalized in the dual angular
representation. In the quasiclassical description it means that
a trajectory exhibits the standard Andreev precession weakly
modulated by scattering off the linear defect. For stronger
defects with α �

√
kF ξ , the majority of states are still gapped

with Eg = αω0; however, a number of subgap states emerge
with E < Eg. These states are localized either to the left or
to the right from the defect and hence are delocalized in the
μ representation. The pairs of subgap states sequentially split
off the bulk states with increasing α, as shown Fig. 1. Hence,
for a single line we reproduce and confirm the prediction of
Ref. [27].

We also analyzed reorganization of the chiral states in a
number of more complicated geometries with linear defects.
Here we assumed α �

√
kF ξ , such that complications due to

formation of subgap states do not appear and the problem can
be mapped onto a sufficiently simple quantum mechanics.

We considered a configuration with the vortex center lo-
cated at a finite distance b from the linear defect. Such a
configuration cannot be realized at equilibrium since the vor-
tex prefers to minimize its potential energy and chooses to sit
right at the defect. However, such a situation can take place in
the presence of a depinning force or as a dynamic state under
microwave absorption. We find that the minigap decreases
with the growth of b and closes at b ≈ α/kF .

A vortex pinned at the intersection of two linear defects
demonstrates a peculiar commensurability effect, when the
minigap essentially depends on how close is the angle ϕ

between the defects to a rational of π . For perfect match-
ing, the minigap Eg ≈ αω0, while in the most frustrated case
the minigap still exists but at a smaller background level of
Eg ≈ √

αω0 (see Fig. 6).
The phenomenon of the minigap opening survives in the

presence of a periodic structure of linear defects, even if the
period a is smaller than the coherence length. For a square
lattice of equal defects, the minigap Eg ∼ αω0, unless the a
becomes comparable to the Fermi wavelength.

Having considered various types of linear defects, we con-
clude that the effect of gap opening is quite robust. This
observation has obvious consequences for vortex behavior in

a granular media. Vortices pinned at grain boundaries are ex-
pected to have a minigap typically scaling with the boundary
strength α as Eg ≈ αω0. This effect will manifest itself at low
temperatures T < Eg in the exponential suppression of heat
capacity and flux-flow conductivity, as well as in a threshold
behavior of optical conductivity. Low-temperature anomalies
in flux-flow conductivity have been recently reported in gran-
ular aluminum [36]. Although this material belongs to the
dirty case, we believe that the qualitative conclusion on the
gap opening in granular systems remains valid in the presence
of disorder and therefore can explain the experimental finding
of Ref. [36].

Our analysis of the electronic states in the vortex core is
applicable for highly transparent defects with the reflection
coefficient R � 1, corresponding to the inequalities α � kF ξ

and Eg � �. In this limit the defect perturbation effectively
redistributes only α lowest states, without admixing the states
of continuous spectrum. Therefore, we can access neither
the Josephson vortex regime (realized in the tunneling limit
with T � 1) nor the crossover from the Abrikosov to the
Josephson vortex. Nevertheless, one can argue that the subgap
states localized along the defect are presumably important
for the transition from the Abrikosov to the Josephson vortex
[37] with increasing the defect strength α. In particular, our
conclusion that modification of the order parameter is not
important for obtaining the minigap (see Sec. VI) might be
modified if those gliding states are taken into account.

Finally, we mention that the developed theory can be eas-
ily generalized to the case of linear defects in clean p-wave
superconductors. We expect the zero-energy Majorana bound
state [38] will survive gap opening and will facilitate transport
across the gap.
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APPENDIX A: KERNEL V (x, y) IN THE ANGULAR
REPRESENTATION

1. General expression

In the chiral basis, the matrix elements of a generic po-
tential perturbation are given by Eq. (12). Taking the wave
functions from Eq. (37) and tracing over the Nambu space,
we obtain

Vμν = A2
∫

d2r e−2K (r)ei(ν−μ)ϕwμν (kF r)V (r), (A1)

where

wμν (z) = Jμ−1/2(z)Jν−1/2(z) − Jμ+1/2(z)Jν+1/2(z). (A2)

Now we transform the matrix Vμν to the angular representation
according to Eq. (15). Summation over momenta is done with
the help of the Jakobi-Anger identity

eiz sin θ =
∑

n

Jn(z)einθ , (A3)
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leading to

∑
μν

ei(ν−μ)ϕwμν (kF r)eixμ−iyν = 2i sin
x − y

2
eikF Rxy (r), (A4)

where

Rxy(r) = r[sin(x − ϕ) − sin(y − ϕ)]. (A5)

In terms of the Descartes coordinates r1 = r cos ϕ and r2 =
r sin ϕ, R(r) is given by

Rxy(r) = r1(sin x − sin y) + r2(cos x − cos y). (A6)

Hence, the general expression for the kernel V (x, y) valid for
any potential V (r) takes the form

V (x, y) = 2iA2 sin
x − y

2

∫
d2r e−2K (r)eikF Rxy (r)V (r). (A7)

The factor sin[(x − y)/2] reflects 2π antiperiodicity of wave
functions in the angular representation [see Eq. (14)].

2. Kernel for the linear defect

For the linear defect with V (r) given by Eq. (2), the coor-
dinate r1 coincides with b. It then remains to integrate over the
coordinate r2 along the defect:

V (x, y) = iαω0kF eikF b(sin x−sin y) sin
x − y

2

×
∫ ∞

−∞
dr2 e−2K

(√
r2

2 +b2
)
eikF r2(cos x−cos y), (A8)

where we expressed the prefactor in terms of the dimension-
less defect strength α introduced in Eq. (19).

Expression (A8) is still an exact matrix element V (x, y)
for the linear defect, without any approximations. As far as
we are interested in rearrangement of low-energy states by a
not very strong defect (αω0 � �), one can further simplify
V (x, y). In this case, only clean states with momenta μ ∼ α

are involved. So we may replace the exponent e−2K (r), which
decays exponentially at r ∼ ξ , by 1. Then, the integral in the
second line of Eq. (A8) produces the following delta function:

2πδ[kF (cos y − cos x)]) = 2π [δ(x − y) + δ(x + y)]

kF | sin x| . (A9)

The first term in the right-hand side does not contribute due to
vanishing of the factor sin[(x − y)/2] in Eq. (A8), while the
second term yields the matrix element (17).

3. Kernel for the half-line defect

In this Appendix we calculate the matrix element in the
angular representation V (x, y) for a half-line terminating
at the vortex center and specified by the potential V (r) =
(h̄2

κ/m)δ(r1)θ (r2), with θ (r2) being the step function. The
matrix element V (x, y) can be written as V line(x, y)/2 +
δV (x, y), where V line(x, y) is the matrix element of the lin-
ear defect given by Eq. (17) with s(x) = sign(sin x), and the

difference is defined as [cf. Eq. (A8)]

δV (x, y) = i

2
αω0kF sin

x − y

2

×
∫ ∞

∞
dr2 signr2 e−2K (r2 )eikF r2(cos x−cos y). (A10)

Neglecting the factor e−2K (r2 ) as it was done for the linear
defect in Appendix A 2, one gets 1/[kF (cos x − cos y)] for the
integral in the second line of Eq. (A10). Hence, we obtain the
the matrix element of the half-line:

V (x, y) = iαω0

2

[
s(x) 2πδ(x + y) − 1

2 sin[(x + y)/2]

]
.

(A11)
Making Fourier transform, we obtain matrix elements in the
original momentum representation [cf. Eq. (30)]:

Vμν = αω0

[
hμν

π (μ + ν)
− i

2
δμ+νsignμ

]
. (A12)

APPENDIX B: TWO INTERSECTING LINES

1. Spectrum for two perpendicular lines

The quasilocal Schrödinger equation for two perpendicular
lines passing through the center of the vortex is given by
Eq. (50) with ϕ = π/2. Similar to the single-line treatment in
Sec. II C, the Schrödinger equation can be brought to a local
form by arranging ψ (±x) and ψ[±(x − π )] into the vector

	(x) =

⎛
⎜⎝

ψ (x)
ψ (−x)

ψ (x − π )
ψ (−x + π )

⎞
⎟⎠. (B1)

It is sufficient to consider the evolution of 	(x) at the interval
x ∈ [0, π/2] since its various components then span the whole
circle [0, 2π ]. The 2π antiperiodicity of the wave function
imposes the following constraints on 	 at the beginning and
at the end of the interval [0, π/2]:

	(0) =

⎛
⎜⎝

a
a

−b
b

⎞
⎟⎠, 	(π/2) =

⎛
⎜⎝

c
d
d
c

⎞
⎟⎠. (B2)

Here ψ (0) = a, ψ (π ) = b, ψ (π/2) = c, and ψ (−π/2) = d .
The evolution of 	 can be written as

∂x	(x) = ME	(x) (B3)

with

ME =

⎛
⎜⎝

iE/ω0 α1 0 −α2

α1 −iE/ω0 −α2 0
0 −α2 iE/ω0 −α1

−α2 0 −α1 −iE/ω0

⎞
⎟⎠. (B4)

The vectors at the edges of the interval are related by the
transfer matrix

	(π/2) = SE (π/2)	(0), (B5)

which becomes just a trivial matrix exponent since ME is x
independent: SE (π/2) = exp(MEπ/2). After some algebra,
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we obtain

SE (π/2) = cos(kπ/2) + sin(kπ/2)

κ
ME , (B6)

where k =
√

(E/ω0)2 − α2
1 − α2

2 . Processing now the con-
straints (B2), we arrive at the following equation for the
allowed momenta k:

(k2 − α1α2) cos πk + (α1 + α2)k sin πk + α1α2

k2
= 0. (B7)

This equation generalizes Eq. (32) to the two-line case and
reduces to the latter if either α1 or α2 goes to zero. For given α1

and α2, transcendental equation (B7) defines a discrete set of
momenta kn(α1, α2) > 0, which we label starting with n = 0,
as in Sec. II D. The spectrum is then given by

En = ω0

√
α2

1 + α2
2 + k2

n (α1, α2), (B8)

where kn are defined by Eq. (B7).
In the limit of strong defects (α2

1 + α2
2 � 1), k0 ≈ 2 and

the minigap takes the form

Eg = ω0

√
α2

1 + α2
2 . (B9)

2. Minigap asymptotics for ϕ = π/n

A common feature of the one-line case considered in
Sec. II D and the two-perpendicular-line case analyzed in
Appendix B 1 is that finding the asymptotic behavior of the
minigap is much easier than determination of the whole spec-
trum. While the latter requires calculating discrete momenta
by solving a transcendental spectral equation, those are not
needed to compute the asymptotics. This observation im-
mediately leads to the following criterion for the minigap
determination: It is the first positive solution of

det ME = 0, (B10)

where the matrix ME governs chiral evolution of 	 [see
Eqs. (25) and (B3)]. Equation (B10) also holds for any rational
ϕ/π when the vector 	 is finite.

In the case ϕ = π/n, the vector 	 has 2n components.
We arrange them according to Eq. (51) and obtain the matrix
ME . In general, ME is a symmetric matrix with the following
properties: (i) its main diagonal contains ±iE/ω0 in alternat-
ing order, (ii) its 1-diagonal contains α1 and α2 in alternating
order, with the elements (2,3) to (n + 1, n + 2) having an
additional minus sign, (iii) the element (1, 2n) equals −α2,
(iv) other elements not related by the symmetry are zero. The
structure is illustrated by the n = 4 example (here ε = E/ω0):

ME =

⎛
⎜⎜⎜⎜⎜⎝

iε α1 0 0 0 0 0 −α2
α1 −iε −α2 0 0 0 0 0
0 −α2 iε −α1 0 0 0 0
0 0 −α1 −iε −α2 0 0 0
0 0 0 −α2 iε −α1 0 0
0 0 0 0 −α1 −iε α2 0
0 0 0 0 0 α2 iε α1−α2 0 0 0 0 0 α1 −iε

⎞
⎟⎟⎟⎟⎟⎠

.

Using determinant properties, the minigap equation (B10)
can be equivalently written as

det(ε1 + iR) = 0, (B11)

where 1 is a unit matrix and

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α1 0 0 0 . . . 0 α2

−α1 0 α2 0 0 0 0
0 −α2 0 α1 0 0 0
0 0 −α1 0 α2 0 0
0 0 0 −α2 0 0 0
...

. . .
...

0 0 0 0 0 0 α1

−α2 0 0 0 0 . . . −α1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix is diagonalized in the momentum representation
by a two-site modulated plane wave ua = w(−1)a

eiqsa with a =
1, . . . , 2n. Solving for the modulation depth w, we obtain the
spectrum of the matrix iR:

λ2(qs) = α2
1 + α2

2 − 2α1α2 cos(2qs). (B12)

Momentum quantization is influenced by a “wrong sign” of
the top-right matrix element of R that results in qs = (s −
1/2)(π/n) with s = 1, . . . , 2n. Thus, Eq. (B11) yields

n∏
s=1

[E2 − λ2(qs)] = 0. (B13)

The minimal positive solution of this equation is evidently
E = λ(q1), leading to the minigap asymptotics (52).

The same analysis can be repeated for angles ϕ = (m/n)π
with m �= 1. Position of plus and minus signs in front of α1

and α2 in the matrix ME will be different, but the matrix R
will be exactly the same.

APPENDIX C: EFFECT OF �(r) DISTORTION

In this Appendix, we estimate the effect of �(r) modifi-
cation on the quasiparticle spectrum. We perform the analysis
in the simplest case of a sufficiently weak defect, 1 � α �√

kF ξ , when the subgap states localized along the defect dis-
cussed in Sec. V do not appear and simple quantum mechanics
developed in Sec. II applies. The zero-temperature limit is
assumed.

1. Perturbative correction to �(r)

According to the self-consistency equation [35], the order
parameter is given by the sum over quasiparticle states

�(r) = g
∑

n

un(r)v∗
n (r) tanh(En/2T ), (C1)

where g is the BCS coupling constant, T is temperature, and
summation goes over positive energies, En > 0. In Eq. (C1),
u and v are the particle and hole components of the wave
function.

Following the approach discussed in Sec. VI, we are going
to determine the first approximation to the order parameter
�1(r), taking the wave functions in the presence of the linear
defect but calculated with the clean �0(r). Since the states
of the chiral branch exhibit strong modification by the defect,
we expect that they give the leading contribution to δ�(r) =
�1(r) − �0(r). Hence, we will replace the latter by δ�(r) =
�ch

1 (r) − �ch
0 (r), where the right-hand side contains only

the contribution of the chiral branch to the self-consistency
equation (C1). Replacing then u and v by the components
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FIG. 11. Angular harmonics of the chiral-branch contribution to
the order parameter �ch

1 given by Eq. (C4) as a function of the
distance from the vortex center. The defect strength α = 10. The
black curve represents γ0(r) in the clean case [see Eq. (C6)].

of the real-space wave function (42), and we obtain at zero
temperature

�ch
1 (r) = gA2e−2K (r)

∑
n

∑
μ,ν

〈μ|n〉〈n|ν〉

× Jμ−1/2(kF r)Jν+1/2(kF r)ei(μ−ν−1)ϕ,

(C2)

where n labels the states in the presence of the defect and the
overlaps 〈μ|n〉 are given by Eq. (41).

In order to obtain the correction to the order parameter
δ�(r), one should subtract the chiral-branch contribution in
the clean (α = 0) case, leading to

δ�(r) = �ch
1 (r) − �ch

1 (r)
∣∣
α=0. (C3)

It is convenient to present Eq. (C2) as a sum over angular
harmonics:

�ch
1 (r) = gA2e−2K (r)e−iϕ

∞∑
m=−∞

γm(r)eimϕ. (C4)

Here, the mth harmonic of the order parameter γm(r) can be
represented as a sum of contributions from the overlaps with
the nth state: γm(r) = ∑

n γmn(r), where

γmn =
∑

μ

〈μ|n〉〈n|μ − m〉Jμ−1/2(kF r)Jμ−m+1/2(kF r). (C5)

In the clean case, only the zero harmonic is present, and the
summation over μ and n can be easily carried out:

γ0(r)
∣∣
α=0 = kF r

2

[
J2

0 (kF r) + J2
1 (kF r)

]
. (C6)

In the presence of the defect, nonzero harmonics appear.
Due to the π -shift symmetry of the wave functions [Eq. (40)]
odd harmonics vanish: γ2k+1(r) = 0. The profiles of several
lowest harmonics are shown in Fig. 11.

2. Back action on the spectrum

Here we calculate the shift of the minigap due to the modi-
fication of the order parameter δ�(r) given by Eq. (C3). It can
be obtained by treating the emerging correction to the BdG

FIG. 12. The shift of the minigap �Eg for several values of the
defect strength α obtained numerically for kF ξ = 500. The total
value of the shift is depicted by brown circles. Orange squares and
blue diamonds represent the contributions from the zero (�E 0

g ) and
nonzero (�E �=0

g ) harmonics of the order parameter, correspondingly.

Hamiltonian (5) by the first-order perturbation theory:

�Eg =
∫

dr 	
†
0 (r)

(
0 δ�(r)

δ�∗(r) 0

)
	0(r), (C7)

where 	0(r) is the wave function with the lowest positive
energy Eg(α) [see Eqs. (34) and (42)].

The shift of the minigap can be decomposed into the con-
tributions due to the distortion of the zero-harmonic profile of
the order parameter and due to its axial-symmetry distortion
by higher harmonics:

�Eg = �E0
g + �E �=0

g . (C8)

The expressions for these contributions can be written in
the terms of the order-parameter harmonics introduced in
Eq. (C5) as

�E0
g = 4πgA4

k2
F

∫ ∞

0
dz z e−4K (z/kF )γ00(z)

× [γ0(z) − γ0(z)|α=0] (C9)

and

�E �=0
g = 4πgA4

k2
F

∫ ∞

0
dz z e−4K (z/kF )

∑
m �=0

γm0(z)γm(z). (C10)

The integrals above can be calculated numerically for dif-
ferent values of the parameter α. It turns out that the m = 0
contribution (C9) converges at small distances, therefore, the
factor e−4K (r) can be omitted and �E0

g appears to be indepen-
dent of kF ξ :

�E0
g = 4πgA4

k2
F

c0(α), (C11)

where the coefficient c0(α) should be determined numerically.
On the other hand, Eq. (C10) has a logarithmic divergency
at large distances, and the factor e−4K (r) provides an infrared
cutoff at z ∼ kF ξ :

�E �=0
g = 4πgA4

k2
F

c1(α) ln kF ξ, (C12)
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where the coefficient c1(α) should be determined
numerically.

Figure 12 represents the shift of the minigap �Eg for
several values of the defect strength α, as well as its

contributions from zero (�E0
g ) and nonzero (�E �=0

g ) harmon-
ics. The calculations were performed at kF ξ = 500. We see
that the growth of �Eg nearly saturates for α > 10 at the value
of c0 + c1 ln kF ξ ≈ 0.1.
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