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Local thermal fluctuations in current-carrying superconducting nanowires
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We analyze the effect of different types of fluctuations in internal electron energy on the rates of dark
and photon counts in straight current-carrying superconducting nanowires. Dark counts appear due to thermal
fluctuations in statistically independent cells with the effective size of the order of the coherence length;
each count corresponds to an escape from the equilibrium state through an appropriate saddle point. For
photon counts, spectral broadening of the deterministic cutoff in the spectra of the detection efficiency can
be phenomenologically explained by local thermal fluctuations in the electron energy within cells with the same
effective volume as for dark counts.
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I. INTRODUCTION

All kinds of second-order phase transitions are smeared by
fluctuations. For example, superconducting fluctuations in the
normal state according to Aslamazov and Larkin [1] broaden
the resistive transition of thin films. Microelectronic devices
utilizing thin superconducting films also suffer fluctuations
which deteriorate the performance metrics of these devices.
Specifically, for superconducting nanowire single-photon de-
tectors, it is believed that fluctuations are responsible for
smearing otherwise deterministically sharp energy threshold
(spectral cutoff) between photons which are surely detected
and photons which are not detected in any way [2,3]. Such
a detector is a narrow albeit two-dimensional (2D) thin su-
perconducting strip carrying the current less but close to the
critical current. Photon absorbed in the strip gives rise to a
nonequilibrium “hot” spot that reduces the current-carrying
ability of the strip around the absorption site. If the photon
energy is sufficient, the superconducting state breaks down
locally. Energy dissipated in the resistive spot initiates growth
of a normal domain which may have a length of a few times
larger than the strip width. Once the domain starts to grow,
current diverts from the strip to the read out line. This causes
the domain to shrink. When it disappears the current returns
into the strip and after a dead time the strip is ready to detect
another photon. This event produces a voltage transient which
is called a photon count. However the strip still generates
counts even when it is not illuminated by light. Such counts
are called dark counts.

Perhaps the most important performance metrics of
these detectors is the timing jitter that measures stochastic
variations in the time delay between the arrival of a photon
and the appearance of the detector response to this photon

[4–7]. So far, several effects which may cause jitter have been
considered. Fano fluctuations [8] randomize the portion of the
energy of the absorbed photon which is delivered to electrons
via the cascade of scattering events between electrons and
phonons [9]. The amount of the delivered energy directly
affects the delay time that causes jitter. Another effect is the
dependence of the delay time on the position of the photon
absorption cite across the strip [10]. The effect of fluctua-
tions (local variations) in the film thickness was theoretically
studied in Ref. [11]. All those fluctuations will also smear the
deterministic spectral cutoff.

Here we analyze the effect of different fluctuations on
the experimental spectra of the photon count rate in straight
superconducting strips. The straight strips instead of mean-
ders were chosen in order to avoid bends, which are known
to dominate in the dark count rate and in the photon count
rate at small photon energies [12]. We first study statis-
tics and rate of dark counts as a function of current and
temperature in straight superconducting strips and evaluate
the involved energy barrier and the length scale. We further
show that fluctuations discussed in literature do not quantita-
tively explain experimental spectral broadening in the photon
count rate. We then invoke local thermal fluctuations and
estimate the optimal volume for these fluctuations which
is required to describe quantitatively experimental spectral
broadening.

The paper is organized as follows. Section II is devoted to
the specimens and experimental results. In Sec. III we exam-
ine fluctuation sources for their capability to fit experimental
data. Section IV contains the discussion and concludes the
paper. Mathematical details and the results of the study of
film thickness with an atomic force microscope (AFM) are
collected in the Appendices A and B, respectively.
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II. EXPERIMENT

A. Specimens and experimental details

We used straight narrow superconducting NbN strips
which were geometrically identic and had a length of 40 μm
and a width of 100 nm. NbN films with a thickness of 5 nm
were deposited on Al2O3 substrates by reactive magnetron
sputtering. The strips were drawn by the electron-beam lithog-
raphy with negative polymethylmethacrylate resist, which
results in significant improvement of the superconducting
characteristics [13]. The active strip was surrounded by par-
allel equally spaced and electrically suspended strips of the
same width in order to eliminate diffraction and to obtain
uniform optical coupling. The active strip was imbedded via
tapers in the middle of the much wider central line of a few
millimeter-long coplanar waveguide (CPW). The CPW was
electrically short cut at the one side of the strip. Voltage
transients were acquired at the end of the CPW on the other
side of the strip. More details on the layout of specimens are
presented in Ref. [5].

A few studied specimens had almost identical param-
eters. From the fit of the resistive transition with the
Aslamazov-Larkin fluctuation model [1], we found the mean-
field transition temperature 11.8 K. Transport measurements
showed a critical current of 34 μA at 4.2 K and the normal
sheet resistance 330 �/� at 25 K.

Specimens were mounted either in the deep stick with
optical access trough the single-mode fiber or in the optically
tight continuous flow cryostat. The former setup was used to
acquire spectra of the single-photon response at 4.5 K and
different bias currents, whereas the latter served for study of
dark counts in the temperature range from 4.5 to 9 K. Fiber in
the former setup was in situ aligned against the active strip
to maximize the detection efficiency. This ensures uniform
illumination across the strip. For spectral measurements we
used a monochromator delivering light in the wavelength
range from 350 to 2500 nm with the spectral resolution from
0.012 to 0.1 eV, respectively, and three continuous lasers at
the wavelengths 532, 633, and 1064 nm. The coplanar line
with the specimen was connected to the coaxial cable that
guided voltage transients to the warm amplifier outside of the
deep stick or cryostat. The coaxial bias tee was plugged in the
coaxial line right before the amplifier. Counts delivered by
the specimen were registered either by the real-time os-
cilloscope or by the computer-controlled time correlated
single-photon counting card.

B. Mean dark count rate

Current dependences of the mean dark count rate (DCR),
γDCR(I, T ) at several temperatures are shown in Fig. 1(a)
on the logarithmic scale. Apart from a slight down curving
at large currents, they look almost linear. The steepness in
γDCR(I ) dependences at a fixed temperature increases with
temperature. Solid lines in Fig. 1(a) are the best fits with the
expression for the rate of phase slips predicted by generalized
2D LAMH model [14,15],

γDCR(I, T ) = � exp

[
−�F (I, T )

kBT

]
, (1a)

FIG. 1. (a) Dark-count rates as functions of current at sev-
eral temperatures specified in the legend. Solid lines represent fits
with the generalized 2D Langer-Ambegaokar-McCamber-Halperin
(LAMH) model (1). (b) Maximum rates of dark counts and crit-
ical current as functions of temperature. Solid lines represent fits
described in the text.

�F (I, T ) = 3.86εcond(T )VF (T )

(
1 − I

Ic(T )

)5/4

, (1b)

VF (T ) = πa2ξ 2(T )d, (1c)

where εcond is the superconducting condensation energy den-
sity at I = 0, ξ is the coherence length, d is the thickness
of the strip, whereas a ∼ 1 and the attempt rate � are fitting
parameters. We discuss the essence of the formula and the
temperature dependences of εcond and ξ in Sec. III A. From
the best fits we found a = 1.73 ± 0.14 almost independent of
temperature.

At each temperature the maximum rate corresponds to the
experimental critical current Ic. Picking up pairs of maximum
rate values and corresponding currents, we plot temperature
dependences of the critical current and the maximum rate
max(γDCR), see Fig. 1(b). The maximum rate increases with
the temperature as max(γDCR) ≈ exp(12T/Tc). This depen-
dence is shown in Fig. 1(b) with the straight line. The Ic(T )
dependence closely follows the Bardeen interpolation [16]
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FIG. 2. DCR (squares) and PCR for different wavelengths (spec-
ified in the legend) versus current at 4.9 K. PCRs at different
wavelengths were scaled to the maximum value of 106 s−1 at 31 μA.
Arrows mark the regimes for the DCR (28.4 μA; 41 s−1) and PCR
at 1064 nm (24.4 μA; 1.14 × 104 s−1) for which count statistics was
analyzed.

of the temperature dependence of the pair braking current
IB ∝ [1 − (T/Tc)2]3/2, which is also shown with the solid line
in Fig. 1(b).

Current dependences of the photon count rates (PCR) γPCR

for three used wavelengths are shown in Fig. 2 along with
the current dependence of the dark count rate γDCR. Photon
fluxes at all three wavelength were small enough to ensure
that the maximum count rate 106 s−1 is much smaller than the
reciprocal dead time (approximately 10 ns). The data were
acquired at 4.9 K. For photons with larger energy (550-nm
wavelength) γPCR(I ) dependence almost saturates at I ≈ Ic,
whereas for low-energy photons the rate increases rapidly at
all currents.

C. Count statistics and spectra of photon counts

Before going to DCR statistics we prove the technique
by demonstrating that photon counts delivered by the strip
reproduce duly statistics of the laser light. It is known [17]
that arrivals of coherent photons are a discrete Poisson pro-
cess for which the probability density of the time-interval
δt between arrivals of two sequential photons (interarrival
time) is described by the exponential distribution E (δt ) =
γ exp(−γ δt ), where γ is the mean arrival rate of photon.
For such photon stream, the probability density for exactly n
photons to arrive within a given time-interval �t is described
by the binomial distribution approximated by the Poisson
distribution P(n) = (n!)−1nn exp(−n) for small n = γ �t and
by the normal distribution N (n) = (2πn2)−1/2 exp[−(n −
n)2/(2n)] for n � 1.

Panel (a) in Fig. 3 shows the normalized probability
density PD(δt ) of the time interval between two adjacent
photon counts. The solid line is the best fit with the function
f (δt ) = γ exp(−γ δt ), where γ = 1.2 × 104 s−1 is very close
to the measured mean photon count rate of photons γPCR =
1.14 × 104 s−1 (Fig. 2). It is clearly seen that the measured

FIG. 3. Statistics of photon counts for the wavelength 1064 nm.
Data were acquired at 4.9 K and I = 24.6 μA. Panel (a) Proba-
bility density of the interarrival time. Solid line presents the best
exponential fit. The inset shows autocorrelation function computed
according to Eq. (2) for the time window �t = 5 × 104 ns. Panels
(b) and (c) show probability densities for the number of counts in
time windows 2 × 105 and 107 ns, respectively. Solid lines present
best Poisson fits. The mean values are specified in the legends.

probability density follows exactly the form expected for the
Poisson process.

To cross-check that the process we deal with is indeed
Poisson, we measured occurrence times ti of all count events
within an acquisition time of a few minutes. We then con-
verted the array {ti} of measured arrival times into the array
of the numbers of events {n j} which occurred in a given
time-interval �t . We put intervals on the array {ti} in such a
way that each event ti starts its own interval until the end of the
interval hits the end of the massive. We then computed prob-
ability densities PD(n) for exactly n events to occur within
the interval for two vastly different values of this interval
2 × 105 and 107 ns. The results are shown in panels (b) and
(c) in Fig. 3 with the best Poisson fits obtained for mean val-
ues n = 2.37 and 120.5, correspondingly. Using the identity
n = γ �t , we found the best fit values γ = 1.19 × 104 and
1.21 × 104 s−1, which are very close to the experimentally
measured mean count rate γPCR = 1.14 × 104 s−1.

Finally, we computed the autocorrelation function for the
variable n. To save computation time, we reduce the number
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FIG. 4. Statistics of dark counts. Main panel: probability density
of interarrival times for two different mean count rates. The solid line
is the best exponential fit to the data obtained at the smaller rate. Left
inset: probability density of the number of counts in the time window
5 s at the smaller mean count rate. The solid line shows Poisson
distribution with n = 209. Right inset: Autocorrelation function for
the smaller count rate.

of intervals �t by splitting the total acquisition time of the
array {ti} in equal adjacent intervals and count the number of
events n j in each of them. The second-order autocorrelation
function is defined as

Ak =
∑N/2

j=1(n j − n)(n j+k − n)∑N/2
j=1(n j − n)2

, (2)

where N is the number of elements in {n j} and n = γPCR�t .
The result obtained for �t = 2 × 105 ns is shown in Fig. 3(a).
The autocorrelation function is centered at zero for all k that
evidences statistical independence of photon counts for the
whole array at the timescale larger than �t . We showed ex-
emplarily data acquired for the wavelength 1064 nm at 5 K
and I = 24.6 μA. Qualitatively same results were obtained at
all other wavelengths and currents presented in Fig. 2 apart
from the region I ≈ Ic where rates of photon and dark counts
are comparable. Hence, the strip as a single photon detector
duly reproduces statistics of coherent photons. This justifies
the technique we choose. By recording Poisson statistics of
the number of photon counts we also proved that the incan-
descent light of the monochromator contained large enough
number of modes to ensure Poisson statistics of photons [17].
We will note here that measuring interarrival statistics for
photon counts from continuous coherent light source (laser)
is a quick and simple method for qualifying single-photon
detectors as compared to techniques relying on pulsed lasers
and two detectors after a beam splitter.

We further apply the technique described above to evaluate
statistics of dark counts. The results shown in Fig. 4 were
acquired at 4.9 K and two currents I = 28.4 and 30.7 μA.
The corresponding mean dark count rates were 41 and 9 ×
104 s−1. The main panel shows probability density of in-
terarrival time of dark counts for these two currents. At
the smaller current (right axis) probability density decreases

FIG. 5. Spectra of the mean photon count rate at different cur-
rents. The solid lines are best fits with Eq. (3). The inset shows the
best-fit values for the cutoff energy E0 and the width of the transition
σE . The solid line in the inset shows the model fit, and the dashed
line is a guide to the eyes.

exponentially as expected for noncorrelated Poisson pro-
cess. The solid line represents the best exponential fit with
γ = 43 s−1, which is almost equal to the experimental value
γDCR = 41 s−1 (Fig. 2). Probability density for small intervals
of the order of a few nanoseconds could be obtained only
for much larger mean count rates corresponding to larger
currents. The curve affiliated with the left axis was computed
from the data acquired at the larger current. It shows the be-
ginning of the drop at small intervals which we attribute to the
recovery of the strip after the count event. Full recovery occurs
after approximately 10 ns that is 20 times the full width at
half maximum of the voltage transient after the amplifier. The
spike at 20 ns is due to the reflection of the voltage pulse at the
input of the amplifier. A small bump in the curve that appears
right after the recovery has been completed may signal the
presence of after pulsing. Insets in Fig. 4 show probability
density of the number of counts in the time window 5 s
(left) and the autocorrelation function computed for the time
window 1 ms (right). Although the autocorrelation function
evenly scattered around zero, thus, confirming that the process
is not correlated for times longer than 1 ms, the probability
density for the number of counts deviates from the Poisson
distribution. The solid line shows Poisson distribution for
the mean value of n = 209 which provides maximum in the
experimental PD(n) dependence. The corresponding standard
deviation (STD) σ = √

n equals 14.5, whereas numerically
computed for experimental data points standard deviation 16.8
is slightly larger. We have to note that at count rates in excess
to 50 s−1 the statistics of dark counts drastically changes. The
autocorrelation function reveals periodical oscillations, PD(n)
broadens with respect to the Poisson distribution with the
same mean value and the probability density of the interin-
terval time rolls off as exp[−(γDCRδt )p] with p ≈ 0.85. We
believe that this is an artificial effect created by the stabilizing
feedback in the electronics.

Figure 5 shows spectra of photon count rates at different
currents obtained at a temperature of 4.5 K. Measured count
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rates were normalized to the fixed photon flux at the speci-
men. There is a continuous increase in the count rate at all
currents. At relative currents larger than 0.8, γPCR saturates
in the shown range of photon energies. The saturation level
increases with the current. Solid lines represent fits by the
formula,

γPCR(E ) ∝ 1 + erf

(
E − E0√

2 σE

)
, (3)

which we discuss below in Sec. III B (erf is the error function).
The best-fit values E0 and σE shown in the inset in Fig. 5
formally define the effective cutoff energy in the spectrum of
γPCR and the width of the transition from zero efficiency to the
saturated value.

III. FLUCTUATION ANALYSIS

In this section we analyze different types of local fluctua-
tions in a current-carrying superconducting strip. We assume
that each photon count or dark count is an intrinsically
deterministic event. Whether the count occurs depends on
the instantaneous local value of the internal electron energy
in a relevant nucleation volume located somewhere in the
superconducting strip. For a dark count to occur, thermal
fluctuations in respective nucleation volume have to drive the
superconducting system out of the equilibrium state which is
surrounded by an activation barrier in the free energy. Once
this happens superconductivity is destroyed locally that de-
terministically triggers a count event. As the reference point
for the Helmholz free energy of electrons F , we take its local
minimum value F0 corresponding to the equilibrium uniform
superconducting current state. At any finite temperature F is
the subject to local thermal fluctuations. The activation barrier
to overcome is �F = F+ − F0, where F+ is the energy of the
saddle-point configuration. As given by the Boltzmann distri-
bution, the probability density for the free-energy to fluctuate
to the value F > F0 is proportional to exp[−(F − F0)/(kBT )]
and, consequently, the dark count rate is proportional to
exp[–�F/(kBT )]. If the activation barrier is nonuniform over
the area of the strip, dark counts presumably occur in the areas
with the smallest �F . Such areas are defined by constrictions
[18] and static local fluctuations in the strip thickness [11]
or in the superconducting energy gap [19]. The barrier also
depends on the position across the strip [7,10]. The presence
of such fluctuation does not affect the statistics of dark counts
but modifies their mean count rate.

Differently to dark counts, a photon count comes from the
hot spot created by the photon around the absorption site.
Since absorption sites are evenly distributed over the strip
surface, local fluctuations of any kind in the activation barrier
smear deterministic, steplike dependence of the mean photon
count rate γPCR(E ) on the photon energy E . As it is true
for dark counts, fluctuations in the barrier do not affect the
statistics of photon counts for fixed photon energy. Besides
factors mentioned above, the activation barrier is affected by
local variations of the electron enthalpy which in our case is
identical to the internal electron energy. One of the sources
of local variations in the internal energy is Fano fluctua-
tions [8] which randomize the portion of the photon energy
delivered to electrons within the hot spot. Another source,

which we introduce below in Sec. II B, is local (nonuniform)
thermal fluctuations of the internal electron energy in small
cells spread over the strip. Phonons in the strip itself together
with phonons in the substrate serves for each such cell as a
thermal bath. Fluctuations in different cells are statistically
independent unless their sizes are smaller than the correlation
length of fluctuations. Statistical equilibrium thermodynamics
[20] predicts the variance of such fluctuations proportional to
the mean squared temperature and the heat capacity of the cell.
Uniform microscopic model of such fluctuations [21] based
on Langevin equations and random heat exchange between
the whole strip and the underlying substrate describes quan-
titatively noise spectrum that was observed in multiphoton
photodetectors, such as transition edge sensors [22], hot-
electron bolometers [23], and microbolometers [24]. In these
detectors, however, local fluctuations on any scale smaller
than the strip size are averaged out and cannot be detected
experimentally.

A. Dark-count rate

1. Generalized LAMH theory

In the case of dark counts, the above phenomenological
picture of fluctuations in the free energy can be put on firm
theoretical grounds as the problem belongs to the class of
thermal decay of a metastable state in equilibrium statistical
mechanics. The threshold value of �F as well as the fluctu-
ation volume VF is then determined by an optimal fluctuation
that provides the saddle point rather than the minimum to
the free energy. The theory of thermally assisted phase slips
in quasi-one-dimensional (1D) superconducting wires [with
the cross-section S � ξ 2(T )] was developed in Refs. [14,15]
(LAMH theory). Working within the Ginzburg-Landau (GL)
approximation applicable in the vicinity of Tc, it is possi-
ble to identify the saddle-point (instanton) configuration of
the order parameter field that should be reached by thermal
fluctuations. Once it is approached, further evolution of the
overheated region is not probabilistic leading eventually to the
relaxation of phase winding and appearance of a detectable
voltage pulse. Hence, the expression for the decay rate takes
the form of Eq. (1a) with the activation barrier given by
Eq. (1b) (see Appendix A). In Eq. (1b), εcond(T ) is the con-
densation energy density in the absence of supercurrent, the
last factor accounts for the flattening of the barrier as I → Ic,
and VF (T ) = Sξ (T ) is the effective volume of the fluctua-
tion region in a 1D wire [here is the difference with the 2D
Eq. (1c)!].

The original LAMH theory describes thermal decay of the
supercurrent state in 1D wires near Tc. In order to generalize
it to arbitrary temperatures below Tc one has to go beyond
the GL approximation and to use the full set of equations
for dirty superconductors, including the Usadel equation for
quasiparticles and the self-consistency equation for the order
parameter. This program was realized in Refs. [25,26] where
the function �F (I, T ) was obtained numerically for arbitrary
currents and temperatures. With rather good accuracy it can
still be cast in the form (1b) with VF (T ) = Sξ (T ) where one
should properly adjust the GL expressions for εcond(T ) and
ξ (T ) at low temperatures [26]. For practical purposes we
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propose the following analytical approximations valid for the
whole temperature range (see Appendix A),

εcond(T ) = 1.556N0(kBTc)2(1 − 0.132t̂2)2(1 − t̂2)2,
(4)

ξ (T ) = 0.667 coth(0.655t̂−1
√

1 − t̂2.64)

√
h̄D

kBTc
,

where t̂ = T/Tc is the reduced temperature, N0 is the density
of states at Fermi level per one spin projection and D is the
diffusion coefficient in the normal state.

In the 2D geometry, an accurate theory of the thermally
assisted phase slips is missing. Although it is generally ac-
cepted that dark count events in superconducting strips are
triggered by vortex (or vortex-antivortex pair) motion [27], the
value of the activation barrier for vortex unbinding remains
to be determined. In the simplest approximation, when the
vortex is considered as a zero-size particle, the problem was
addressed in Ref. [28]. From the theoretical side, the draw-
back of this analysis is that the distance of the vortex from the
strip edge (or the vortex-antivortex separation) is of the order
of ξ (T ), except for extremely small currents I � Ic. Hence,
the contribution of the vortex core is essential and cannot
be neglected. From the experimental side, the vortex hopping
model [28] does not reproduce the current dependences at all
temperatures with a fixed set of fit parameters. Moreover, the
temperature dependence of the preexponent factor � is much
steeper than the experiment shows.

In order to describe our experimental data on dark count
rates in 2D, we propose a phenomenological model based
on: (i) LAMH theory in 1D, (ii) its generalization to lower
temperatures [25,26] as summarized by Eq. (4), and (iii) the
observation that at I ∼ Ic the relevant spatial scale in the
vortex model is on the order of ξ (T ) [27,28]. These arguments
suggest that the activation barrier in 2D can be written in
the same form (1b) but with the fluctuation volume VF (T ) ∼
ξ 2(T )d . We refer to this ansatz as the generalized 2D LAMH
model.

The set of Eqs. (1) with D = 5 × 10−5 m2 s−1, N0 =
1.5 × 1047 J−1 m−3 [29], and d = 5 nm were used to fit ex-
perimental data shown in Fig. 1(a). From the best fit we found
that the effective fluctuation volume corresponds to VF (T ) =
πa2ξ 2(T )d with a ≈ 1.73.

2. Stochastic real-time description

The activation exponent for the dark-count rate in Eq. (1)
was obtained in a purely thermodynamic way as a free-energy
cost �F of an optimal fluctuation at a given temperature T .
Such an approach leaves open the question of the development
of fluctuations in real time, which is important for the analysis
of photon counts. To describe this process, one has to deal
with temporal fluctuations of the local density of the inter-
nal electron energy, u(r, t ). These thermal fluctuations are
inherent to equilibrium systems and are caused by coupling
to the thermostat, whatever the microscopic mechanism of
this coupling is. Qualitatively, development of the optimal
fluctuation in time can be described in terms of the inter-
nal electron energy in the fluctuation volume VU given by
U (t ) = ∫

u(r, t ) dVU . Its fluctuations around the mean U are

described by the normal probability distribution function

f (U ) = 1√
2πσU

exp

[
− 1

2σ 2
U

(U − U )2

]
, (5)

with the variance σ 2
U = kBT 2cVU being determined by the

specific heat capacity of electrons, c, according to the theory
of thermodynamic fluctuations [20].

Time-dependent fluctuations of U (t ) can be considered as
a continuous stochastic Ornstein-Uhlenbeck (OU) processes
[30] in statistically independent volumes spread over the strip.
Each count temporarily reduces the current through the strip
and resets OU processes in all volumes. Hence the question
when the next count may first occur reduces to the problem
of the first hitting time in the OU process, i.e., the time
which elapses from the start of the process until the electron
energy U for the first time hits the preset boundary U + �U .
Although the probability density of the first hitting time can
be computed exactly [31], we need only the asymptotic for
times much larger than the life time of the fluctuation τF . This
asymptotic is an exponential function of the form gexp(−gδt )
[32,33]. For �U � σU , the theory of OU processes pre-
dicts g = �U exp[−�U 2/(2σ 2

U )]/(
√

2πσU τF ). Obviously, g
represents the rate of dark counts in terms of the stochas-
tic process. Hence, one should identify (�U )2/2σ 2

U with
�F/kBT , and �U/(

√
2πσU τF ) with the attempt frequency �.

B. Photon count rate

1. Previously discussed broadening mechanisms

Our spectra of the detection efficiency were fitted by
Eq. (3). The best fits to experimental dependences γPCR(E )
are shown with solid lines in Fig. 5. The inset represents the
fitting parameters E0 and σE for different bias currents. We see
that σE ≈ 330 meV, nearly independent of I/Ic.

Below we discuss several mechanisms that might be re-
sponsible for the spectral broadening and show that all of
them underestimate the magnitude of the effect. As mentioned
above, there are several mechanisms, which may contribute to
the spectral width, σE , of the dependence γPCR(E ):

(1) Dependence of the detection current on the position of
the absorption site across the strip was theoretically studied
in Refs. [7,10]. The difference between the maximum and the
minimum of the local detection current within the strip width
along with the dependence of the maximum detection cur-
rent on the photon energy give an estimate of σE ≈ 50 meV,
which is much smaller than our experimental values of σE ≈
330 meV.

(2) Fano fluctuations mediated in thin films by the escape
of high-energy phonons would result in σE = (GζhE�)1/2

where the effective Fano factor G ≈ 1 [9] and the upper
boundary for the quantum efficiency ζ = 0.5 as defined by
the ratio of electron and phonon heat capacities [34]. With
the energy gap � = 2.05kBTc and the photon energy 1 eV,
we obtain σE = 33 meV, which is an order of magnitude
smaller than our experimental values. Furthermore, Eq. (5)
with σE ∝ √

E poorly fits our experimental spectra.
(3) Effect of the film nonuniformity is hard to ad-

dress quantitatively. High-resolution transmission electron
microscopy of our films [29] revealed granules with the size
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of the order of the film thickness. Granulas with the dominant
size even less than the film thickness were also found in
thicker NbN films prepared by a different technology [35].
Typically, the size of granules is distributed according to either
log-normal [36] or inverse cubic function [35] with a standard
deviation not larger than the film thickness. Therefore, for
our films with the thickness equal to the coherence length,
we do not expect a noticeable effect of the film granularity
on the PCR spectra. Inspection of our films with an atomic
force microscope (Ref. [29] and Appendix B) returned the
correlation radius in the film thickness Rd < 10 nm and the
standard deviation on a larger length scale σd < 0.13 nm.
Hence, expected contribution of the thickness fluctuations to
the relative spectral broadening σd/d = 0.026 (d = 5 nm) is
much less than the relative experimental spectral broadening
σE/E0 > 0.2.

(4) Nonuniformity of the energy gap in 2.1-nm-thick
NbN films was studied with a scanning-tunneling microscope
(STM) [19]. For the gap variations the authors found a corre-
lation radius of R� ≈ 28 nm and the relative gap fluctuations
σ�/� ≈ 0.08. This is still a few times less than the relative
spectral broadening found experimentally.

2. Local thermal fluctuations

Facing the finding that the known fluctuation mechanisms
and nonuniformities do not quantitatively explain spectral
broadening of the photon count rate, we invoke local thermal
fluctuations on the length scale lU corresponding to the ef-
fective fluctuation volume VU = π l2

U d as the leading source
of broadening. In the absence of photons such fluctuations
have been discussed in Sec. III A 2, and now we calculate their
effect on the spectral broadening σE .

Upon arrival of a photon, a part of its energy released
to the electronic system increases the internal energy of the
latter within a hot spot with the radius lhs. Assuming that the
delivered energy and the internal electron energy are instanta-
neously additive, one can qualitatively describe the process of
photon absorption as a sudden change in the internal energy
U → U + ς∗E in the effective volume VU . Here E is the pho-
ton energy, ς∗ = ζ (lU /lhs)2 is its fraction that heats electrons
in the fluctuation volume VU , and ζ is the quantum efficiency
(the portion of the photon energy delivered to electrons in the
hot spot). This approach is meaningful only when lU � lhs.
For lU � lhs, part of the photon energy delivered to the hot
spot does not noticeably change the electron energy in the
effective fluctuation volume VU .

The photon is detected if the elevated energy U + ς∗E
exceeds U + �U , where �U is the relevant activation barrier.
Since U itself is a random quantity with the distribution (5),
the sharp deterministic dependence of the photon count rate
on the photon energy becomes smeared,

γPCR(E ) ∝
∫ ∞

U+�U−ς∗E
f (U )dU, (6)

that leads to Eq. (3) with E0 = �U/ς∗ being the cutoff photon
energy in the deterministic detection scenario, and the follow-
ing relation between the spectral width σE and the standard

deviation σU :

σE = σU

ς∗ = σU

√
E0

�Uς∗ . (7)

Using the measured spectral width of γPCR(E ), we can
estimate the effective size of a relevant fluctuation lU and
check the concept of local thermal fluctuations developed
above for consistency. Macroscopically, the increase �U in
the mean energy, which suppresses superconductivity in the
current-carrying state, corresponds to the steady-state change
�T in the ambient temperature that reduces the value of the
critical current to the bias current, i.e., satisfies the condition
I = Ic(T + �T ). Using analytical fit to experimental Ic(T )
dependence [Fig. 1(b)], we computed �T (I, T ) for the tem-
perature and currents at which the spectral data (Fig. 5) were
acquired. For the best linear fit in the inset of Fig. 5 we obtain
E0/�T = 0.72 eV/K. Defining the threshold in the electron
energy as �U = cVU �T and recalling that E0 = �U/ς∗, we
see that the factor cVU cancels out from the last equality in
Eq. (7) that allows defining the fraction ς∗ from experimental
data without knowing VU as ς∗ = (kBT 2/σ 2

E )(E0/�T ). Sub-
stituting E0/�T = 0.72, σE = 330 meV, and ζ = 0.5, we
find ς∗ = 0.017 and, thus, establish a relation between the
size of a relevant fluctuation and the size of the hot spot:
lU ≈ 0.2 lhs.

The radius of the hot spot created by a photon with the
energy of 1 eV is a few tens of nanometers [37]. It can
be estimated as lhs ≈ (Dτhs)1/2 = 45 nm, where τhs ≈ 40 ps
is the lifetime of the hot spot [38]. This gives an estimate
lU ≈ 9 nm. Differently, using the heat capacity of electrons in
the normal-state c = 2π2k2

BN0Tc/3 and the values of E0/�T
and ς∗, we find lU ≈ 12 nm. The two estimates are very close.
However, due to uncertainty in the electron heat capacity in
the current-carrying superconducting state [39] the second
estimate for lU is less reliable. We would like to note here that
the estimated size of the effective fluctuation volume for pho-
ton counts is very close to the size of the nucleation volume for
dark-counts aξ ≈ 8.5 nm determined in Sec. III A [ξ = 5 nm
for our operation temperature, Eq. (4)]. This closeness might
indirectly evidence that in both cases we deal with the same
fluctuation phenomenon.

IV. DISCUSSION AND CONCLUSION

In this paper, we demonstrate that the phenomenological
model of local thermal fluctuations describes quantitatively
our experimental data for the spectral broadening of the
photon detection efficiency with the reasonable value of the
effective fluctuation volume which almost coincides with the
nucleation volume of dark counts. We supposed that local
thermal fluctuations are statistically independent from the
amount of energy delivered by the photon into the fluctuat-
ing cell. This may be not strictly correct if correlation time
of the local fluctuations is much smaller than the lifetime
of the hot spot. The fluctuation model itself is valid unless
the correlation length RU of thermal fluctuations exceeds lU .
The estimate RU ≈ (DτEP)1/2 = 5 nm, where τEP ≈ 0.6 ps is
the relaxation time of the electron energy via phonons in
the strip at the transition temperature averaged over electron

184508-7



ALEXEJ D. SEMENOV et al. PHYSICAL REVIEW B 102, 184508 (2020)

distribution [34], gives RU < lU . Although random heat ex-
change between electrons in the strip and the substrate via
phonons will further modify the correlation length, the effect
of the substrate in our case is reduced by the almost ballistic
transport of phonons in the film on the length scale of RU .
Indeed, the phonon mean free path in the film lph = uphτPE ≈
1.5 nm is on the order of the estimated correlation length.
Here uph = 2.5 m s−1 is the phonon velocity and τPE ≈ τEP =
0.6 ps is the relaxation time of the phonon energy via phonon-
electron interaction in our films [34]. Bearing in mind the
possible effect of the substrate, we rather consider the esti-
mated value of the correlation length as the lover boundary for
the actual value. Rigorous microscopic theory of local thermal
fluctuations should relax these shortcomings. However, such
theory remains beyond the scope of this paper.

We would like to note here that the width of the γPCR

spectra, which we obtained experimentally, corresponds to the
ultimate value of the timing jitter in photon detection by su-
perconducting strips. Indeed, with the mean slope of the count
delay time (latency) versus photon energy of 12h̄/(kBTc) per
one electron volt (Fig. 5(b) of Ref. [7]) and σE ≈ 0.33 eV
(Fig. 5 of the present text) we arrive at the jitter (standard
deviation) of approximately 2.7 ps that is close to ultimate
reported values [4,5].

In conclusion, we have shown that thermal fluctuations
in the free energy, which drive the cell with the size of a
few coherence lengths into the normal state over the saddle
point in the potential well, quantitatively describe temperature
and current dependences of the dark-count rate in a current-
carrying superconducting strip. We have furthermore shown
that equilibrium thermal fluctuations in a cell of approxi-
mately the same size, explain qualitatively the broadening of
the deterministic spectral cutoff in the detection efficiency.
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APPENDIX A: LAMH THEORY AND BEYOND

1. Activation barrier in the LAMH theory

The LAMH theory [14,15] applicable in the vicinity of
Tc gives the following implicit expression for the activation
energy in the 1D case (Eq. (2.13) of Ref. [15]):

�F (I, T ) = εcond(T )Sξ (T )U (I ), (A1)

where εcond(T ) = H2
c (T )/8π = 4π2N0k2

B(Tc − T )2/7ζ (3) is
the condensation energy density in the absence of a supercur-
rent in the GL region, S is the wire cross section, and ξGL(T )

is the GL coherence length. The current dependence of the
barrier is captured by the last term in Eq. (A1) given by

U (I ) = 27/2

3

√
1 − 3κ2 − 8κ (1 − κ2) arctan

√
1 − 3κ2

√
2κ

,

(A2)

where the dimensionless parameter κ is related to the current
by means of

I = 8πεcond(T )Sξ (T )
c

�0
J, J = κ (1 − κ2). (A3)

The critical current corresponds to κc = 1/
√

3 and Jc =
2/3

√
3.

The function U (I ) vanishing at J = Jc can be expanded at
J → Jc as

U (I ) ≈ 64

15

21/4

31/4

(
1 − I

Ic(T )

)5/4

. (A4)

Remarkably, Eq. (A4) appears to be a very good approxima-
tion for the function U (I ) for all currents with a few percent
discrepancy even at I = 0. For operational purposes we will
replace U (I ) by the 5/4-power approximation (A4). Then
isolating the factor of (64/15)(2/3)1/4 = 3.86, we arrive at
Eq. (1b) with VS (T ) = Sξ (T ).

The LAMH theory applies at T → Tc. Its generalization
to arbitrary temperatures has been performed in Refs. [25,26]
where the activation barrier was obtained by numerical so-
lution of the Usadel and self-consistency equations. It can
be reasonably approximated by the LAMH expression (A1),
provided one uses an intelligent generalization of εcond(T ) and
ξ (T ) to arbitrary T .

Below we calculate εcond(T ) and propose a natural gen-
eralization of ξ (T ) to arbitrary temperatures. An alternative
approach would be to use the relation εcond(T )ξ (T ) ∼
h̄ jdep(T )/e exploited in Ref. [26] and fit the temperature de-
pendence of the depairing current density jdep(T ).

2. Condensation energy density

At arbitrary temperatures, the condensation energy den-
sity is given by (hereafter h̄ = kB = 1 except for the final
expressions),

εcond(T )

N0
= −�2

λ
+ 4πT

ωD∑
ε>0

(E − ε)

= 2πT
∑
ε>0

(
2E − 2ε − �2

E

)
, (A5)

where the summation goes over the Matsubara energies
ε = 2πT (n + 1/2), E = √

�2 + ε2, λ is the dimensionless
Cooper-channel interaction constant, ωD is the Debye fre-
quency, and �(T ) is the BCS value of the order parameter.

In the limit T → Tc, the term �2 vanishes, and keeping �4

we recover the GL expression written below Eq. (A1). In the
low-temperature limit, Eq. (A5) reproduces the known result:
εcond(0) = N0�

2(0)/2, where �(0) = 1.76kBTc.
At intermediate T one can use an approximate expression

(4). This expression correctly reproduces both the low-T and
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T → Tc asymptotics with the overall error less than 1% in the
whole temperature range.

3. Coherence length

In the GL region, the usual definition of the coherence
length for dirty superconductors is ξ 2

GL(T ) = π h̄D/8kB(Tc −
T ). It comes from investigating the linear term in the GL
equation: (1 + ξ 2∇2)� + · · · .

At arbitrary temperatures we define ξ (T ) in a similar way
as the length scale in the equation for small variations of the
pairing amplitude δ� from its mean-field value, assuming
they change slowly in space. They are determined by the
fluctuation propagator [40],

L−1(q) = 4πT
∑
ε>0

[
1

2E
− ε2

E2(Dq2 + 2E)

]
. (A6)

At small q one can expand

L−1(q) = L−1(0) + c(�, T )Dq2 + o(q2), (A7)

where

L−1(0) = 2πT
∑
ε>0

�2

E3
=

{
2(1 − T/Tc), T → Tc,

1, T → 0,
(A8)

and

c(�, T )= π [� + T sinh(�/T )]

8 �T [1 + cosh(�/T )]
=

{
π/8Tc, T → Tc,

π/8�(0), T → 0.

(A9)

Now for a temperature-dependent coherence length ξ (T )
we adopt an operational definition,

ξ 2(T ) = 2h̄Dc(�, T )

L−1(0)
. (A10)

(The factor of 2 in the numerator is related to the fact that
our expansion in δ� is performed near the BCS value rather
than near the normal state.) Thus defined ξ (T ) coincides with
ξGL(T ) as T → Tc and approaches

√
π h̄D/4�(0) at T = 0. A

good approximation of ξ (T ) valid for all temperatures (better
than 1% accuracy) is provided by Eq. (4).

APPENDIX B: THICKNESS UNIFORMITY

For the statistical analysis of the local thickness of our films
we prepared a test object in the form of a 4-μm-wide NbN
strip with a nominal thickness of 5 nm on the sapphire sub-
strate. The strip had a length of 40 μm and was surrounded on
both sides by 1-mm-wide substrate fields. These areas appear
after ion etching of the deposited film. To access additional
roughness, which may appear as the result of ion etching, we
characterized the substrate before film deposition. The strip
was prepared by means of the same technological route as the
route which was used to prepare nanowires for the main exper-
iment. The strip was scanned with an atomic force microscope
(WITec alpha 300 RA) across the strip midline. All scans had
the same total length of 10 μm and were acquired with the
resolution r = 10 nm (distance between points in individual
scans). Distance between adjacent scans along the strip varied
from 10 nm to 1 μm depending on the length of the studied
part of the strip. We levered each scan, i.e., programmatically

FIG. 6. Top panel: Height profile of a representative levered scan.
Arrows mark the borders of areas used for the definition of the strip
thickness [Eq. (B1)]. Labels are the values of the running index
n (along the coordinate x) corresponding to the borders and the
numbers of points involved in the averaging on the strip (p) and on
the substrate (t, u). Bottom left: AFM image of the portion of the
strip with the length L = 500 nm and the squares (not in scale) on
the substrate (A) and on the film (B) which were used for alternative
definition of the film thickness [Eq. (B3)]. Bottom right: Histogram
[non-normalized probability density function (PDF)] of the statistical
distribution of thicknesses μqk and the Gaussian fit (solid line). Fit
parameters are listed in the legend.

eliminated the tilt of the specimen with respect to the instru-
ment reference plane. We then evaluated the mean thickness
for each scan as

μm = 1

p

F1+p∑
n=F1

[
zm,n − 1

t + u

(
S1∑

n=S1−t

zm,n +
S2+u∑
n=S2

zm,n

)]
. (B1)

Here n and m are the running indices, which define the number
of a point in the scan and the number of the scan, respectively,
zm,n is the levered height of the cantilever p < F2 − F1, and
t and u are the total numbers of points on the film and on the
substrate (on each side of the strip), which were accounted
for averaging. Points with numbers n = F1 and n = F2 on
the strip and n = S1 and n = S2 on the substrate are spaced
100 nm apart from the nearest strip edge in order to avoid edge
effects. This configuration is shown in Fig. 6.

The mean thickness μL for the part of the strip with the
length L and the standard deviation σμL in the distribution of
mean scan thicknesses μm were computed according standard
definitions as

μL = 1

M

M∑
m=1

μm, σμL =
√√√√ 1

M

M∑
m=1

(μm − μL )2, (B2)

where M is the number of scans within the length L and
L/M = b represents the distance between adjacent scans. Val-
ues μL and σμL for different combinations of parameters
L, M, and b are listed in Table I.

Alternatively, to get thickness variations relevant to the hot
spot in the main experiment we defined the thickness for a
square on the strip adjacent to the strip edge. We chose the
square with the side length of 100 nm close to the diameter of
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TABLE I. Statistical moments (mean values and corresponding
standard deviations) of the distributions of thicknesses μm for differ-
ent sets of L, M, and b. For the farthest right column p = 340, t =
u = 50; for others p = 20, t = u = 50.

Set L (μm)/M/b (nm)

Moments (nm) 0.5/50/10 4/40/100 20/200/100 40/40/1000

μL 5.15 5.1 5.09 5.5
σμL 0.49 0.51 0.5 0.34

the hot spot. The distance between scans was in this case equal
to the scan resolution b = r = 10 nm and the strip length was
0.5 μm. The number of points in the square was p N = 100
where N = 10 is the number of involved scans and p = N .
The reference for the film thickness was defined as the mean
height for the square on the substrate with the same size and at
the same position along the strip. The configuration is shown
in Fig. 6.

The mean thickness for the square on the strip with the
number k was computed as

μqk = 1

a2

k+a∑
m=k

F1+a∑
n=F1

(
zm,n − 1

a2

k+a∑
m=k

F1+a∑
n=F1

zm,n

)
. (B3)

For the part of the strip with the length L, the mean value
of the thickness μqL and the standard deviation σμqL in the
distribution of square thicknesses μqk were computed for a
set of squares offset by 10 nm in a way presented by Eq. (B2)
with k running from 1 to L/r − N .

The histogram, i.e., non-normalized PDF of the statistical
distribution of μqk for L = 0.5 μm along with the Gaussian fit
is shown in Fig. 6 (bottom right). Numerically computed mo-
ments of this distribution μqL = 5.15 and σμqL = 0.13 nm
are close to values of 5.19 and 0.11 nm returned by the best
Gaussian fit.

Data in Table I show that σμqL does not systematically
depend on the distance between scans b and the length L
of the chosen part of the strip. However, STD decreases
with the increase of the number of scans M or the number
of points in the scan p, which are involved into averaging.
These findings evidence the uniformity of the strip thickness
for lengths up to 40 μm and the absence of any correla-
tions in the strip thickness for distances longer than 10 nm.
We have additionally computed the autocorrelation func-
tion for the thickness following the formalism presented in
Ref. [19] [Eq. (A1)] and extracted the correlation radius Rd <

10 nm.
Statistical distribution of mean square thicknesses μqk has

a STD equal to 0.13 nm which is almost three times less than
the smallest standard deviation (0.37 nm) in the distribution
of the mean scan thicknesses μk (Table I, the farthest right
column). Bearing in mind that the total numbers of averaged
points on the strip and on the substrate are approximately the
same for both algorithms (scans and squares), we attribute the
drastic improvement in the STD for the second square algo-
rithm to a smaller mean-square distance between points on
the strip and on the substrate. We, therefore, conclude that the
evaluated STD in the local strip thickness σμqL = 0.13 nm is
the upper boundary for the actual variations in the mean strip
thickness within squares.

Standard mean-square roughness [41] Sq for squares on
the substrate and on the strip was 2.65 ± 0.23 and 3.08 ±
0.38 nm, respectively. The Sq value measured on the substrate
before film deposition was 2.84 nm, which is close to the
roughness of squares. Finally, the instrument noise of 2.0 nm,
which was defined as the Sq value for 40 000 acquisitions
within an area less than r2, is slightly less but comparable to
the Sq values for the squares. Assuming that the instrument
noise and the substrate roughness are statistically indepen-
dent, we obtain the true substrate roughness 1.74 nm. We note
that STM surface roughness for our films of ≈0.1 nm [19,42]
was less than the thickness variations found in the present
paper that is most likely due to a larger noise in the used AFM
instrument.
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