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We study the energy dissipation rate in a mesoscopic system described by the parametrically driven random-
matrix HamiltonianH[ ¢(t)] for the case of linear biag=vt. We develop a Keldyslr-model approach to
treat kinetics in such a system and use it to calculate the quantum correction to the Kubo result, which reveals
the original discreteness of the energy spectrum. The first correction to the system viscositysc&l@sn
the orthogonal case and vanishes in the unitary case.
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The Kubo formuld is one of the cornerstones of modern spectrum, where dissipation can be obtained with the help of
condensed-matter physics. It is a standard tool for calculatinthe Kubo formula.
various linear-response functions, with conductivity as a pro- The spectrum of a generic closed quantum chaotic system
totypical example. Based on the lowest-order perturbatiomf interacting electrons is properly described by the random-
theory for a continuous spectrum, the Kubo approach conmatrix theory!® provided that the relevant energy difference
nects the kinetic response of a system with respect to sonie smaller than the Thouless energy (Ref. 11) and the
external fielde(t) to the equilibrium correlator of general- system is a good conductoE{>A).'? For the standard
ized currents. Wigner-Dyson random-matrix ensembles, dissipation in the

Application of the Kubo formula essentially relies on the adiabatic { <vy) and Kubo ¢>uv) regimes had been cal-
assumption of a continuous spectréifihe spectrum may be culated by Wilkinson'® In the Kubo regime, the energy dis-
considered as continuous if the inelastic widlth of energy  sipation rate is given by the linear-response formula,
levels exceeds the system’s mean level spadinglin an
electron system, the inelastic smearing is due to interactions
(electron-electron and electron-phon@s well as escape to
reservoirs operative for open systemBi,(T)=TI";,(T)
+T e, Where the interaction-induced smearihgy(T) is
usually a power-law function of temperatufe while T o

WKubozg'TrC(o)Uzv 1

where =1 for the Gaussian orthogon&BOE) and 2 for
the unitary(GUE) ensembles, an€(0)={((JE;/d¢)?)/A?

~Gecdh, With being the dimensionless conductance Ofis the variance of the level velocity normalized by the mean
ese?. Yesc DEING evel spacingA,™ which determines the critical velocity

the contact between the system and the leads. The wid — . . . )
spread application of the Kubo formula for macroscopic ob—vKNA/ C(0) separating the adiabatic and Kubo regimes of

jects is justified by the smallness of the level spacing dissipation.(The system of units witth =1 is used through-

: - out the papey. In the adiabatic limit, the dissipation rate

f:g;;;etﬂrtgs'the smearirigy(T) at experimentally relevant nontrivially depends on the symmetry of the Hamiltontan:

However, forclosed(gesc<1) microscopic systems the WB:CBUI+,B/2, )
condition of continuous spectrum is violated at sufficiently
low temperatureswhen the interaction-induced smearing wherec, = (7/4)I'($)[C(0)]**AY?andc,= 7wC(0). Hence,
I'i(T) becomes smaller than. The field had been pio- dissipation is superohmic for GOE, while for GUE it remains
neered by Gor’kov and Eliashbérgho studied the polariz-  ohmic, exactly coinciding witWi,, despite a very different
ability of a small metallic particle. Later on, dissipation with mechanism of dissipation.
discrete specta had been extensively studied for mesoscopic A schematic diagram indicating the regions of the adia-
rings both in the limits where the Kubo formula césee, patic and Kubo regimes as functions of the inelastic width

e.g., Refs. 4 and)or cannot be applied. Very recently, an T, and velocityv of external perturbation is shown in Fig. 1.
analogous situation was discussed in the context of vortex

dynamics in layered superconductdfs. T /A
In a closed system with';,(T)<A, the mechanism of "
dissipation depends on the rate=d¢/dt of variation of the
external fielde(t). For sufficiently slow perturbations with
v<<vg (the velocity vk depends on the sensitivity of the 1
spectrum to the change ¢f and will be defined beloyy the
system adiabatically follows the spectrum of its instanta- adiabatit
neous HamiltoniarH[ ¢(t)], and dissipation is due to rare
Landau-Zener transitions between individual leveBast 0 1
perturbations withv>v cause multiple transitions between
energy levels, thereby transforming the discrete spectrum of FIG. 1. Position of the adiabatic and Kubo regimes as functions
the stationary Hamiltonian into a featureless quasicontinuousf the inelastic widthl";, and velocityv.
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Counterintuitively, the linear-response Kubo formula doesbeing the mean level spacing at the center of the band. The
not describe the low-velocity behavior of closed systems atlispersion of the matrix elements
low temparatures wheh;,<A.

In this paper, we address the question of how does dis- ﬂ
creteness of energy levels of a stationary(Q) system with

e
I'h<<A manifest itself in the Kubo regimev&uvy) of a

driven system when the levels are smeared into a quasicot mde'pendent of the r721atr2|x si2é The generalized c.ondgc—
tinuous spectrum. To this end, we develop a Keldysh fielcfanc'fa IS therC(O)=2_(r /A ..The sta_tes of the Hamiltonian
theory which describelsoththe adiabatic and Kubo regimes are f'”e‘?' byN/2 nqmnteractmg ferm|on§.

of dissipation on the same ground. With its help we show _ 1€ time evolution governed by(t) will change the state
that the relative correction to the high-velocity asymptoticsOf the system and event_ually pump some energy Into It The
(1) can be regularly expanded in integer powers ofénergy of the system will grow unlgss the melastlc.lntlerac—
(v /v)?3. For the orthogonal symmetry, the fitsme-loop tion with the thermal bath is taken into account. This inter-

uantum correction taV is given b action will establish a nonequilibriqm steady ;tate. Remark-
g kubo 1S @ y ably, however, the energy dissipation rate is independent of

>=a’2(1+ 8ij) (5)

1 the resulting distribution and hence can be calculated as a
F(—) - mean growth rate of the total system energy of noninteract-
W, 1 3 (U_K) L @) ing fermionst®
Wicubo 323 | p : Within the Keldysh formalism, the system is described by

the action(the weight ise™ )
where the omitted terms have tf@[(v«/v)*®] and the
crossover velocity is defined asc=(2%mw?)A/\/C(0). S[\If]:—ifw At t(t)
Thus, the remaining correlations in the quasicontinuous —
spectrum enhance dissipation atvy, with a gradual
crossover to the superohmic regini® at v<vg. In the
unitary case, the first and the secoftdo-loop quantum
corrections to the Kubo result) vanish, making it tempting
to conjecture that the identityV,=Wy,,, holds for all
velocities.

Quantum corrections to the quasiclassical properties
disordered systems had been the subject of intense studies
the past decadés?® In treating these phenomena, the non-
linear o model was proven to be the most powerful tool both
in the perturbative and nonperturbative regintebere it is
often the only possible approgchirhree versions of ther
model based on the supersymmétryreplical® and
Keldysh '8 techniques had been proposed for noninteract

Jd
iTaE_H[#’(t)] o3 (1), (6)

whereW (1) is a GrassmanianM-vector field acting in the
direct product of the index space of the Hamiltonian,
Keldysh (K) space, and particle-hol@H) space introduced
in order to handle the orthogonal symmetry of the
Hamiltonian!* The Pauli matrices in th& and PH spaces
ofre denoted byr; and 7;, respectively. Derivation of the
rmodel, which is a low-energy effective theory for actid@,

is a standard procedure. One has to average DWe S
over Hamiltonian(4), decouple it by the X4 matrix Q- ,
and integrate over fermiong. Keeping the terms which are
finite in the limit N— o and assuming linear bias=uvt [the
case of a genetic perturbationp(t) is considered
elsewher®’] we arrive at the following action for ther

ing systems. model?®

The problem of energy pumping by the parametrically - 703
driven HamiltoniarH[ ¢(t) ] belongs to the class of nonequi- S= —TrErQ+ _f dtdt' (t—t")%trQu:Quy, (7)
librium problems, which dictates the choice of the Keldysh 2A 8A

formalism as a solution tool. We will derive the Keldysh | hare Q3= w022/ A=(m/2)C(0)v2A. The first term in

model for the parametrically driven random-matrix Hamil- Eq. (7) is the standard random-matrix acti@hwhich is re-
tonian and show that its saddle-point solution yields the ki-ghonsiple for the whole spectral statistics. The second term is
netic equation for the distribution function, reproducing the ot yinetic origin: it accounts for interlevel transitions of the

Kubo .result(l). Fluctuations near t_his saddle point are re'time-dependent HamiltoniaH[ o(t)]. The field theory with
sponsible for the quantum correction to the Kubo formula,cion (7) describes both the adibatic and Kubo regimes of

leading to Eq(3). _ o dissipation on an equal footing. It is controlled by the single
We consider a time-dependent matrix Hamiltonian parameter

®

H[ ¢(t)]=Hcoske(t)+H;sinke(t), (4) Q l(v)2/3
A

whereH, andH; are theNxX N matrices from the same GOE oK
(HT=H) distributed with the probability densitP(H;) which will be used hereafter as a measure of velogity

o exq_(ﬂZ/A,NAZ)trHi?] and k=(2wo/A)N"Y2 In the In the stationary case(X=0), the Keldysh Green func-
limit N— o assumed thereafter, Hamiltonié#) reduces to a  tion Q is diagonal in the energy representati6n:

generic dependencél=Hy+Voe(t), with V=kH,;. The

density of states for an instant Hamiltonian is given by the 1 2F
Wigner semicirclep(E) =A [ 1— w?E2/4N?A2]Y2, with A 0 -1

® 73, 9
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whereF(E)=1-2f(E), andf(E) is the electron distribu- (a) (b)

tion function. The evolution of the distribution function at ---- -

QO #0 is described by the saddle point of actigh. Varying

with respect to the constrai@?=1, one obtains the saddle-
point equatior Q, §S/ §Q]=0. Seeking the solution in form
(9), we obtain the equation for the distribution function

FIG. 2. One-loop corrections to the system energy. The solid
lines stand for propagatofd5) and (16), the dashed line denotes
for the source fielde(t), and the open and solid vertices come from

fi as the termsS, andS, respectively.
J J
(E+—’)ftt,=—ﬂ3(t—t’)2ftt,. (10 0 a b 0

ot _aT 0 0 _bT

) , , ) , V= T _ (14
The same equation had been obtained in Ref. 22 starting with -b" 0 0 a
the diagrammatic technique. Performing the Wigner transfor- 0 b* —a* 0
mation f(E,t)=fd7e'E™f,, »,_.» we arrive at the kinetic
equation where the innerfouten grading corresponds to the P(K)

space. The elements,, andb,;, describe Cooperon and dif-
AEY L PHED fuson modes, respectively. Their bare propagators®fead
i = e (11 s . 2
o e o (ag,e,a5 )= (t1gttyy) Ot e @ 13 i),
This is a diffusion equation in the energy space, Wit reseom
being the bare “diffusion coefficient.” The rate of energy (15
pumping for the system described by the kinetic equation oA
MY 03t 42
(1D Is given by (B b ) = — Oltia—tog B(tige w3l (16
of(E,t) dE Q3 B ,
=J E A A (12)  wheret;j=t;—t;. In the stationary caseX=0), EQs.(15

and(16) describe the standard cooperon and diffuson in the
time domain. The exponential decay of the correlators at the
time scaleQ) " is a manifestation of dephasing by the time-
dependent perturbatidi:>®

which coincides with the result of the Kubo formuld).

The kinetic equation11) is a true saddle point of the
action for all velocitiesv. Solution(12) for the dissipation .
rate predicted is valid, however, only in the Kubo regime, 'N€ System energyE(t)) (apart from an additive con-
and is completely incorrect in the adiabatic regime. The reaStan} can then be obtained as a functional derivative with
son is that the saddle-point approximation is justified by thd©SPect to the quantum source figi(t):
large value of the parameté€l/A. In the adiabatic regime, 187
the saddle-point approximation fails and one has to take all - ﬂ — -S-S,

. . : (E(1)) l=0, Z[x]=| e DQ, (17
the Q manifolds into account. As a result of this procedure, 2 Sk(t)
solution (2) should be reproduced. Note the interchange of ) .
steps with respect to Wilkinson’s derivatidhte first calcu- ~ Where the source actidB, = (7/2A) TrcEo; 73Q.
lates the probability of the Landau-Zener transition and then At the saddle point, Eq(17) reproduces resultl2). The
averages it over the distribution of avoided crossings. Her@ne-loop diagrams are shown in Fig. 2. The diagraia 2
we, instead, first average over randomness and then extraeptained from the expansion of the source t&mcontains
the dissipation rate from the field theofy). Thus, it is a  €ither{a(ty,ty)a* (ty,ts)) or (b(ty,ty)b*(t;,t3)) which are
challenging problem to demonstrate how the adiabatic resuroportional to6(0). In theKeldysh formalism, the Heavi-
(2) should be obtained from the field theo(). side 6 function of zero argument evaluates to zero, which is

Quantum correction to the Kubo result2) in the limit  related with the causality of the thedryCalculating for Fig.
Q/A>1 (A/Q is the loop expansion parametean be ob-  2(b) we obtain for the quantum correction to the dissipation
tained in the regular way by expanding over Gaussiarfate
fluctuations near the saddle point. The mat@xcan be
written as® F( 1)

sW, 3] A s
1 F ) WKubo 32/377 Q’ ( )
1)

Q=Ur'PUg, uF=(O (13

which after rewriting in terms of velocity leads to E().
with the Hermitian matrix? having an additional symmetry This result is applicable also in the regime of a smeared
P"=o,7,P 1,0, imposed by the orthogonal symmetry of the spectrum, provided tha@ 7,>1, where 7, is the phase-
Hamiltonian. We choose the standard rational parametrizacoherence time of a stationary system. Under this condition,
tion of theP matrix, P=o375(1+V/2)(1—V/2)"%, withthe  the interaction-induced dephasing can be neglected com-
unit Jacobian. The matri¥ is explicitly given by pared to that due to a time-dependent perturbation.
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=Wy, for the averaged dissipation rate would be a highly

@) (b) nontrivial fact.
—_— ————o—@ The results obtained are relevant for the description of
heating effect in closed Limn-size quantum dots below 0.3

K (Ref. 27 when the phase-coherence timg,%Afl. \ortex

motion in impure superconductors is another field of appli-
FIG. 3. Two-loop corrections teE(t)) in the unitary case. cation, where the conjectub, =W, would indicate that

the dissipative flux-flow conductivity is independent of the

In the unitary case, the diagram of FigbRvanishes in- Velocity of vortex motion.
dicating the absence of the one-loop quantum correction to Summarizing, we have developed the Keldystmodel
the Kubo result. In the two-loop approximation, only the @Proach for studing energy pumping in parametrically
diagrams shown in Fig. 3 contribute to the dissipation ratélriven random-matrix ensembles, thereby opening the way
for the GUE. Each of them has the order m‘f/())z, but to_an analytical tr_eatment of qu_ant_um interference effects in
their sum is zero. Thus, for the case of the unitary symmetrydfiveén mesoscopic systems. With its help we calculated the
the two-loop correction also vanishes. Taking into accounte@ding correction to the high-velocity dissipation, which re-
the coincidence between the low- and high-velocity asympyeals the.orlg_mal dls_creteness_ of the spectrgm of the station-
totics (1) and (2) for B=2, such a cancellation is a strong ary Ha.m|lt9n|an. This correctlo'n emerges in the one-loop
argument in favor of the exact identity, =W, valid for approximation for the GOE and is absent within the two-loop
all velocities. At present we cannot prove this conjecture, buficcuracy for the GUE.
we hope that this can be done by an accurate analysis of the | am grateful to D. M. Basko, Ya. M. Blanter, D. A.
o model (7). We conjecture that the independence of dissi-yvanov, M. V. Feige'man, V. E. Kravtsov, A. I. Larkin, and
pation on the velocity might be another manifestation of yu. V. Nazarov for illuminating discussions. Financial sup-
the peculiar properties of the unitary grotiplt is worth  port from the SCOPES, NWO, RFBR under Grant No. 01-
mentioning that the direct quantum-mechanical calculatiom2-17759, the Russian Ministry of Science, the Russian Sci-
of the transition rates at~wvy prior to disorder averaging ence Support Foundation, the Dynasty Foundation, and the
seems completely impossible. Therefore, the identy ICFPM is acknowledged.
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