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Quantum correction to the Kubo formula in closed mesoscopic systems
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We study the energy dissipation rate in a mesoscopic system described by the parametrically driven random-
matrix HamiltonianH@w(t)# for the case of linear biasw5vt. We develop a Keldyshs-model approach to
treat kinetics in such a system and use it to calculate the quantum correction to the Kubo result, which reveals
the original discreteness of the energy spectrum. The first correction to the system viscosity scales}v22/3 in
the orthogonal case and vanishes in the unitary case.
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The Kubo formula1 is one of the cornerstones of mode
condensed-matter physics. It is a standard tool for calcula
various linear-response functions, with conductivity as a p
totypical example. Based on the lowest-order perturba
theory for a continuous spectrum, the Kubo approach c
nects the kinetic response of a system with respect to s
external fieldw(t) to the equilibrium correlator of genera
ized currents.

Application of the Kubo formula essentially relies on th
assumption of a continuous spectrum.2 The spectrum may be
considered as continuous if the inelastic widthG in of energy
levels exceeds the system’s mean level spacingD. In an
electron system, the inelastic smearing is due to interact
~electron-electron and electron-phonon! as well as escape t
reservoirs operative for open systems:G in(T)5G int(T)
1Gesc, where the interaction-induced smearingG int(T) is
usually a power-law function of temperatureT, while Gesc
;gescD, with gesc being the dimensionless conductance
the contact between the system and the leads. The w
spread application of the Kubo formula for macroscopic o
jects is justified by the smallness of the level spacingD
compared to the smearingG in(T) at experimentally relevan
temperatures.

However, for closed (gesc!1) microscopic systems th
condition of continuous spectrum is violated at sufficien
low temperatureswhen the interaction-induced smearin
G int(T) becomes smaller thanD. The field had been pio
neered by Gor’kov and Eliashberg3 who studied the polariz-
ability of a small metallic particle. Later on, dissipation wi
discrete specta had been extensively studied for mesosc
rings both in the limits where the Kubo formula can~see,
e.g., Refs. 4 and 5! or cannot6 be applied. Very recently, an
analogous situation was discussed in the context of vo
dynamics in layered superconductors.7,8

In a closed system withG in(T)!D, the mechanism of
dissipation depends on the ratev5dw/dt of variation of the
external fieldw(t). For sufficiently slow perturbations with
v!vK ~the velocity vK depends on the sensitivity of th
spectrum to the change ofw and will be defined below!, the
system adiabatically follows the spectrum of its instan
neous HamiltonianH@w(t)#, and dissipation is due to rar
Landau-Zener transitions between individual levels.9 Fast
perturbations withv@vK cause multiple transitions betwee
energy levels, thereby transforming the discrete spectrum
the stationary Hamiltonian into a featureless quasicontinu
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spectrum, where dissipation can be obtained with the hel
the Kubo formula.

The spectrum of a generic closed quantum chaotic sys
of interacting electrons is properly described by the rando
matrix theory,10 provided that the relevant energy differen
is smaller than the Thouless energyET ~Ref. 11! and the
system is a good conductor (ET@D).12 For the standard
Wigner-Dyson random-matrix ensembles, dissipation in
adiabatic (v!vK) and Kubo (v@vK) regimes had been cal
culated by Wilkinson.13 In the Kubo regime, the energy dis
sipation rate is given by the linear-response formula,

WKubo5
b

2
pC~0!v2, ~1!

whereb51 for the Gaussian orthogonal~GOE! and 2 for
the unitary~GUE! ensembles, andC(0)[^(]Ei /]w)2&/D2

is the variance of the level velocity normalized by the me
level spacingD,14 which determines the critical velocity
vK;D/AC(0) separating the adiabatic and Kubo regimes
dissipation.~The system of units with\51 is used through-
out the paper.! In the adiabatic limit, the dissipation rat
nontrivially depends on the symmetry of the Hamiltonian13

Wb5cbv11b/2, ~2!

wherec15(p/4)G( 3
4 )@C(0)#3/4D1/2 andc25pC(0). Hence,

dissipation is superohmic for GOE, while for GUE it remai
ohmic, exactly coinciding withWKubo despite a very different
mechanism of dissipation.

A schematic diagram indicating the regions of the ad
batic and Kubo regimes as functions of the inelastic wid
G in and velocityv of external perturbation is shown in Fig. 1

FIG. 1. Position of the adiabatic and Kubo regimes as functi
of the inelastic widthG in and velocityv.
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Counterintuitively, the linear-response Kubo formula do
not describe the low-velocity behavior of closed systems
low temparatures whenG in!D.

In this paper, we address the question of how does
creteness of energy levels of a stationary (v50) system with
G in!D manifest itself in the Kubo regime (v@vK) of a
driven system when the levels are smeared into a quasi
tinuous spectrum. To this end, we develop a Keldysh fi
theory which describesboth the adiabatic and Kubo regime
of dissipation on the same ground. With its help we sh
that the relative correction to the high-velocity asymptot
~1! can be regularly expanded in integer powers
(vK /v)2/3. For the orthogonal symmetry, the first~one-loop!
quantum correction toWKubo is given by

W1

WKubo
511

GS 1

3D
32/3 S vK

v D 2/3

1•••, ~3!

where the omitted terms have theO@(vK /v)4/3# and the
crossover velocity is defined asvK[(21/2/p2)D/AC(0).
Thus, the remaining correlations in the quasicontinuo
spectrum enhance dissipation atv@vK , with a gradual
crossover to the superohmic regime~2! at v!vK . In the
unitary case, the first and the second~two-loop! quantum
corrections to the Kubo result~1! vanish, making it tempting
to conjecture that the identityW2[WKubo holds for all
velocities.

Quantum corrections to the quasiclassical properties
disordered systems had been the subject of intense stud
the past decades.11,15 In treating these phenomena, the no
linears model was proven to be the most powerful tool bo
in the perturbative and nonperturbative regimes~where it is
often the only possible approach!. Three versions of thes
model based on the supersymmetry,11 replica,16 and
Keldysh17,18 techniques had been proposed for nonintera
ing systems.

The problem of energy pumping by the parametrica
driven HamiltonianH@w(t)# belongs to the class of nonequ
librium problems, which dictates the choice of the Keldy
formalism as a solution tool. We will derive the Keldyshs
model for the parametrically driven random-matrix Ham
tonian and show that its saddle-point solution yields the
netic equation for the distribution function, reproducing t
Kubo result~1!. Fluctuations near this saddle point are r
sponsible for the quantum correction to the Kubo form
leading to Eq.~3!.

We consider a time-dependent matrix Hamiltonian

H@w~ t !#5H0coskw~ t !1H1sinkw~ t !, ~4!

whereH0 andH1 are theN3N matrices from the same GO
(HT5H) distributed with the probability densityP(Hi)
} exp@2(p2/4ND2)trHi

2# and k5(2ps/D)N21/2. In the
limit N→` assumed thereafter, Hamiltonian~4! reduces to a
generic dependenceH5H01Vw(t), with V5kH1. The
density of states for an instant Hamiltonian is given by
Wigner semicircle:r(E)5D21@12p2E2/4N2D2#1/2, with D
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being the mean level spacing at the center of the band.
dispersion of the matrix elements

K U ]Hi j

]w U2L 5s2~11d i j ! ~5!

is independent of the matrix sizeN. The generalized conduc
tance is thenC(0)52s2/D2. The states of the Hamiltonian
are filled byN/2 noninteracting fermions.

The time evolution governed byw(t) will change the state
of the system and eventually pump some energy into it. T
energy of the system will grow unless the inelastic inter
tion with the thermal bath is taken into account. This int
action will establish a nonequilibrium steady state. Rema
ably, however, the energy dissipation rate is independen
the resulting distribution and hence can be calculated a
mean growth rate of the total system energy of nonintera
ing fermions.13

Within the Keldysh formalism, the system is described
the action~the weight ise2S)

S@C#52 i E
2`

`

dtC†~ t !F i t3

]

]t
2H@w~ t !#Gs3C~ t !, ~6!

whereC(t) is a Grassmanian 4N-vector field acting in the
direct product of the index space of the Hamiltonia
Keldysh ~K! space, and particle-hole~PH! space introduced
in order to handle the orthogonal symmetry of t
Hamiltonian.11 The Pauli matrices in theK and PH spaces
are denoted bys i andt i , respectively. Derivation of thes
model, which is a low-energy effective theory for action~6!,
is a standard procedure. One has to averageZ5*DCe2S

over Hamiltonian~4!, decouple it by the 434 matrix Qtt8 ,
and integrate over fermionsC. Keeping the terms which are
finite in the limit N→` and assuming linear biasw5vt @the
case of a genetic perturbationw(t) is considered
elsewhere19# we arrive at the following action for thes
model:20

S5
p i

2D
TrÊt3Q1

pV3

8D E dt dt8~ t2t8!2trQtt8Qt8t , ~7!

where V3[ps2v2/D5(p/2)C(0)v2D. The first term in
Eq. ~7! is the standard random-matrix action,21 which is re-
sponsible for the whole spectral statistics. The second ter
of kinetic origin; it accounts for interlevel transitions of th
time-dependent HamiltonianH@w(t)#. The field theory with
action ~7! describes both the adibatic and Kubo regimes
dissipation on an equal footing. It is controlled by the sing
parameter

V

D
5

1

p S v
vK

D 2/3

, ~8!

which will be used hereafter as a measure of velocityv.
In the stationary case (V50), the Keldysh Green func

tion Q is diagonal in the energy representation:18

L5S 1 2F

0 21D ^ t3 , ~9!
6-2
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whereF(E)5122 f (E), and f (E) is the electron distribu-
tion function. The evolution of the distribution function a
VÞ0 is described by the saddle point of action~7!. Varying
with respect to the constraintQ251, one obtains the saddle
point equation@Q,dS/dQ#50. Seeking the solution in form
~9!, we obtain the equation for the distribution functio
f tt8 as

S ]

]t
1

]

]t8
D f tt852V3~ t2t8!2f tt8 . ~10!

The same equation had been obtained in Ref. 22 starting
the diagrammatic technique. Performing the Wigner trans
mation f (E,t)5*dteiEt f t1t/2,t2t/2 we arrive at the kinetic
equation

] f ~E,t !

]t
5V3

]2f ~E,t !

]E2
. ~11!

This is a diffusion equation in the energy space, withV3

being the bare ‘‘diffusion coefficient.’’ The rate of energ
pumping for the system described by the kinetic equat
~11! is given by

W5E E
] f ~E,t !

]t

dE

D
5

V3

D
, ~12!

which coincides with the result of the Kubo formula~1!.
The kinetic equation~11! is a true saddle point of the

action for all velocitiesv. Solution ~12! for the dissipation
rate predicted is valid, however, only in the Kubo regim
and is completely incorrect in the adiabatic regime. The r
son is that the saddle-point approximation is justified by
large value of the parameterV/D. In the adiabatic regime
the saddle-point approximation fails and one has to take
the Q manifolds into account. As a result of this procedu
solution ~2! should be reproduced. Note the interchange
steps with respect to Wilkinson’s derivation:13 He first calcu-
lates the probability of the Landau-Zener transition and th
averages it over the distribution of avoided crossings. H
we, instead, first average over randomness and then ex
the dissipation rate from the field theory~7!. Thus, it is a
challenging problem to demonstrate how the adiabatic re
~2! should be obtained from the field theory~7!.

Quantum correction to the Kubo result~12! in the limit
V/D@1 (D/V is the loop expansion parameter! can be ob-
tained in the regular way by expanding over Gauss
fluctuations near the saddle point. The matrixQ can be
written as18

Q5UF
21PUF , UF5S 1 F

0 21D , ~13!

with the Hermitian matrixP having an additional symmetr
PT5s1t2Pt2s1 imposed by the orthogonal symmetry of th
Hamiltonian. We choose the standard rational parametr
tion of theP matrix, P5s3t3(11V/2)(12V/2)21, with the
unit Jacobian. The matrixV is explicitly given by
04130
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V5S 0 a b 0

2a† 0 0 2bT

2b† 0 0 aT

0 b* 2a* 0

D , ~14!

where the inner~outer! grading corresponds to the PH~K!
space. The elementsatt8 andbtt8 describe Cooperon and dif
fuson modes, respectively. Their bare propagators read22–25

^at1t2
at3t4
* &5

2D

p
d~ t131t24!u~ t13!e

2V3(t13
3 /31t13t14

2 ),

~15!

^bt1t2
bt3t4
* &5

2D

p
d~ t132t24!u~ t13!e

2V3t13t12
2

, ~16!

where t i j [t i2t j . In the stationary case (V50), Eqs.~15!
and ~16! describe the standard cooperon and diffuson in
time domain. The exponential decay of the correlators at
time scaleV21 is a manifestation of dephasing by the tim
dependent perturbation.22,23

The system energŷE(t)& ~apart from an additive con
stant! can then be obtained as a functional derivative w
respect to the quantum source fieldk(t):

^E~ t !&5
1

2

dZ@k#

dk~ t !
uk50 , Z@k#5E e2S2SkDQ, ~17!

where the source actionSk5(p/2D)TrkÊs1t3Q.
At the saddle point, Eq.~17! reproduces result~12!. The

one-loop diagrams are shown in Fig. 2. The diagram 2~a!
obtained from the expansion of the source termSk contains
either^a(t1 ,t2)a* (t1 ,t3)& or ^b(t1 ,t2)b* (t1 ,t3)& which are
proportional tou(0). In theKeldysh formalism, the Heavi-
sideu function of zero argument evaluates to zero, which
related with the causality of the theory.21 Calculating for Fig.
2~b! we obtain for the quantum correction to the dissipati
rate

dW1

WKubo
5

GS 1

3D
32/3p

D

V
, ~18!

which after rewriting in terms of velocity leads to Eq.~3!.
This result is applicable also in the regime of a smea
spectrum, provided thatVtw@1, where tw is the phase-
coherence time of a stationary system. Under this condit
the interaction-induced dephasing can be neglected c
pared to that due to a time-dependent perturbation.

FIG. 2. One-loop corrections to the system energy. The s
lines stand for propagators~15! and ~16!, the dashed line denote
for the source fieldk(t), and the open and solid vertices come fro
the termsSk andS, respectively.
6-3
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In the unitary case, the diagram of Fig. 2~b! vanishes in-
dicating the absence of the one-loop quantum correctio
the Kubo result. In the two-loop approximation, only th
diagrams shown in Fig. 3 contribute to the dissipation r
for the GUE. Each of them has the order of (D/V)2, but
their sum is zero. Thus, for the case of the unitary symme
the two-loop correction also vanishes. Taking into acco
the coincidence between the low- and high-velocity asym
totics ~1! and ~2! for b52, such a cancellation is a stron
argument in favor of the exact identityW25WKubo valid for
all velocities. At present we cannot prove this conjecture,
we hope that this can be done by an accurate analysis o
s model ~7!. We conjecture that the independence of dis
pation on the velocityv might be another manifestation o
the peculiar properties of the unitary group.26 It is worth
mentioning that the direct quantum-mechanical calculat
of the transition rates atv;vK prior to disorder averaging
seems completely impossible. Therefore, the identityW2

FIG. 3. Two-loop corrections tôE(t)& in the unitary case.
v.
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5WKubo for the averaged dissipation rate would be a high
nontrivial fact.

The results obtained are relevant for the description
heating effect in closed 1-mm-size quantum dots below 0.
K ~Ref. 27! when the phase-coherence timetw*D21. Vortex
motion in impure superconductors is another field of app
cation, where the conjectureW25WKubo would indicate that
the dissipative flux-flow conductivity is independent of th
velocity of vortex motion.7

Summarizing, we have developed the Keldyshs-model
approach for studing energy pumping in parametrica
driven random-matrix ensembles, thereby opening the w
to an analytical treatment of quantum interference effects
driven mesoscopic systems. With its help we calculated
leading correction to the high-velocity dissipation, which r
veals the original discreteness of the spectrum of the stat
ary Hamiltonian. This correction emerges in the one-lo
approximation for the GOE and is absent within the two-lo
accuracy for the GUE.
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