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Vortex viscosity in the moderately clean limit of layered superconductors
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We present a microscopic calculation of the energy dissipation in the core of a vortex moving in a two-
dimensional or layered superconductor in the moderately clean regime. In this regime, the quasiclassical
Bardeen-Stephen result remains valid in spite of the strong correlations between the energy levels. We find that
the quasiclassical expression applies both in the limit of fast vortex matitth transitions between smeared
levels and in the limit of slow vortex motiotwith nearly adiabatic dynamigsThis finding can be related to
the similar result known for the unitary random-matrix model.
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I. INTRODUCTION the overall shift. Increasing the impurity concentration fur-
ther (already in the moderately clean limit for weak
At low temperature, the energy dissipation in vortex coresmpurities** and ultimately in the dirty limit®), the comb
is the main source of resistivity in the mixed state of type-IIstructure is destroyed with a crossover to the clasandom-
superconductors.If a supercurrent flows through a super- matrix ensemblé®
conductor, it exerts a force on the vortices. Unless pinned by Keeping within the moderately clean regime with a dis-
impurities or inhomogeneities, the vortices are brought intacrete spectrum, in two-dimensionédr layered supercon-
motion, which in turn leads to dissipation. Depending on theductors there further exist two limits of dissipatithThe
level of disorder, the vortices may move at different angledirst one applies to the slowly moving vortex with a discrete
with respect to the direction of the supercurrent. At weakquasiparticle spectrurtidiscrete-spectrum regime’ where
disorder, the vortices move together with the supercurrenthe dissipation is due to Landau-Zener transitions between
(“ballistic limit,” with the Hall angle close tow/2). At suf- individual levelst”*®The second limit is with levels smeared
ficiently strong disorder, the vortex motion is directed per-into a continuum either by the vortex motion or by inelastic
pendicular to the supercurrerftdissipative limit,” small processeq“continuum-spectrum regime’ the dissipation
Hall angle. Both limits are well understood within the qua- then is given by the linear-response Kubo formtilat low
siclassical descriptiofi.” A simplified approach describing temperatures, the inelastic smearing can be neglected and the
the dissipative limit goes back to the theory of Bardeen andtrossover between these two regimes is controlled by the
Stephen treating the vortex as a region of normal phase inrortex velocity with the characteristic velocity given by
side a superconductdin spite of neglecting the structure of ~(A/pe)/ kel (here, A is the superconducting gap amd
the quasiparticle excitations in the vortex cOtbe Bardeen- denotes the elastic mean free géth
Stephen theory gives the same reguft to a numerical fac- In the framework of random-matrix models with time-
tor) as the accurate quasiclassical calculation. dependent Hamiltonians, the dissipation in the discrete-
It has been recently suggested that the microscopic strugpectrum and continuum-spectrum regimes was considered
ture of the core excitations may play a much more prominenpy Wilkinson!® He finds that, in the case of the unitary
role in that part of the dissipative regime where the excitaiwvigner-Dyson ensemble, the linear dissipative response re-
tion spectrum remains discretsharp quasiparticle levels mains valid in the whole range of velocities, both in the
specifically in layered superconductdfs™ In the clean  continuum-spectrum(high-velocity and in the discrete-
limit (i.e., for scattering rated/7 much smaller than the spectrum(low-velocity) regimes. Based on this fact and on
superconducting gapr), the motion of quasiparticles in the the similarity between the unitary and cla8snsembles, it
vortex core is ballistic: they cross the vortex core many timesvas shown that with the class level statistics the dissipa-
before scattering off impurities. Therefore in this limit, the tion rate nearly follows the Bardeen-Stephen prediction,
spectral properties are sensitive to the details of disorder resven in the limit of small velocities <v, where the quasi-
alization. In the superclean regim#/c<A?%Eg, whereEx  classical description is no longer valfii.Contrary, it was
is the Fermi energy the levels inside a two-dimensional claimed in Ref. 12 that the additional correlation between
vortex split into two sets(*combs”) of equally spaced levels (the “two-comb” structur¢ may lead to an anoma-
levels™ The transformation of this correlated spectrum intolously high vortex viscosity in the moderately clean regime
a featureless uncorrelated one with increasing disorder pran the low-velocity limit.
ceeds in distinct steps: within the moderately clean regime In our paper, we reconsider the problem of the vortex
(A%/Eg<hi/7<A) a new intermediate regiomM\@/Eg<4/7  viscosity in a two-dimensiona-wave superconductor, tak-
<A JA/Eg) has been fourfd!? where the comb structure ing full account of the discreteness of the vortex spectrum
remains preserved but is randomly shifted in enefthe and of the microscopic structure of the quasiparticle levels.
number of impurities in the core has to be small enough toNMe assume the moderately clean limit with an appropriate
preserve the combs, while being large enough to randomizeumber of impurities in the core, such that the spectrum
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possesses the randomly shifted two-comb strudtilve pre-  limit kgé>1, the spectrum and the eigenfunctions may be
cise condition is given in Sec. lIWe find that in spite of the easily found® The eigenvalues form a spectrum of equidis-
level correlations derived in Refs. 11 and 12, the vortex vistant levels

cosity does not differ from the well-known quasiclassical

result~" for three-dimensional superconductors. Within the E.=nrwo, ()
same microscopic model we consider separately the discrete-h h | kes half-i |
spectrum and continuum-spectrum regimes of dissipation: i ere the angular momentupa takes half-integer values,

both limits we arrive at the Bardeen-Stephen result for thd*= " 1/2, and
dissipation,

p J'OOA(r) 02K gy

echwgT Heo o Kgr
Oxx= B Un? ) (1) wo= - ) (4)
f e—ZK(r)dr

wheren is the electron density; wo~A?/Ef is the spacing 0
between the levels in the cotendB is the magnetic field.
The two-comb level structure found in Refs. 11 and 12 may rA(r’)
be classified as the circular unitary random-matrix ensemble K(r)= fo Ve dr’; ®)

of dimension 2° Therefore, our findings may be considered
as a generalization of Wilkinson’s resdftso circular en-  r is the distance from the core center. The basic electronic
sembles. We also find the scattering timéor quasiparticles ~energy scale in the vortex core takes the valye-A?/sg,
in the core in thesswave approximation: for a weak impurity up to a possible logarithmic prefactor X{[) due to the
strength, the effective t/is larger than the bulk scattering shrinkage of the vortex core at small temperatuies
rate 1f, by the logarithm of the impurity strength. A similar (Kramer-Pesch effe€}). The eigenstates¥V , = (u,, ,v#)T
logarithmic correction was previously derived in Refs. 6 andtake the form
7.

The paper is organized as follows. In Sec. Il, we prepare JM—1/2(ka)e_'(“_1/2)0 —K(n)
for the calculation by deriving the microscopic Hamiltonian u(r=A 3,41y Ker)e i(w+1/2)0 € ' 6)
projected onto the relevant subgap states in the vortex core. .
In Sec. 1ll we review the results of Refs. 11 and 12 on thewhere A?= (4kg'[5e 2%(Ndr)~1~kg /¢ is the normaliza-
circular random-matrix ensemble appearing in a disorderetion factor, and],(x) are the Bessel functions.
vortex at the intermediate level disorder. We then describe In the following, we will be interested in processes at
the two limiting regimes of dissipatior(Sec. IV), the energies far below the superconducting gap and thus project
discrete-spectrum and the continuum-spectrum regimes, arall the operators onto the subgap sta®s It will be conve-
set up the stage for the calculations. In Sec. V, we treat thaient to take the Fourier transform of these eigenvectors in
case of the discrete energy spectrdow velocities and no the variablew and introduce a new angular variakpelabel-
inelastic level broadeningwhile Sec. VI is devoted to the ing the direction of the quasiclassical motion of the quasipar-
opposite continuum-spectrum limit where the levels ardicle,
broader than the interlevel distance. Finally, we discuss our

findings in Sec. VII. The sensitivity of the energy levels to » 1¢12 R aikor

the vortex displacement is calculated in the Appendix. ‘I’d)(r)zg Vu(rerf=A o-iniz|& €N, (7)

II. MICROSCOPIC HAMILTONIAN OF THE MOVING where we introduced the vectb[,]=kF(sin ¢,—C0S¢) point-
VORTEX ing perpendicular to the direction specified by the angle

. . _ . with absolute valuédg . The plane-wave exponent in EQ)
Before discussing the moving vortex, let us review the;g thenk 4r =ker sin(¢—6). This basis of wave functions has
excna‘ur?n spectrumdpf a cIeaP twp-dlmenspnal \éortﬁx aly very simple structure: in addition to the phase winding
lrest. The crc])rr%spor} Igg wzveGunctlons are given by the o5, 4/2) (providing the antiperiodic boundary conditions
utions to the Bogoliubov—de Gennes equations in ¢), these wave functions are plane waves in the direction
Ho A(r)\/u u of the wave vectok 4 restricted to a region of siz& around
=E
A*(r) —Hgp/\v

(2)  the vortex center. Note thalt 4(r) is not an eigenfunction of
where Hy=p?/2m—Er. We assume an axially symmetric

the Hamiltonian(2). Prepared in such a state &t 0, the
wave function will rotate in the¢ basis according to
vortex with the order parametex(r)=A(r)e'?, where the \P(r,t)=\P¢_th(r).
modulus of the order parameter depends only on the radial We now turn to the problem of the moving vortex with
component and the phase winds with the angular coordi-impurities. It can be described by the time-dependent
nate . We neglect the magnetic field in the vortex core, Bogoliubov—de Gennes equations
assuming a large magnetic penetration depthé, where
é=vp/mA is the superconducting coherence lengtiere ii\PzH(t)\If e
and below we choose units with=1). In the quasiclassical at '

v
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whereH(t) is the Hamiltonian of the vortex at the position
r=vt with v the vortex velocity,

Ho+U(r)
A*(r—wvt)

A(r—vt)
—Ho—U(n))’

H(t)= €)
andU(r) is the potential set up by the impurities.

In the clean limit A 7>1), the admixture of bulk states
(with energies greater thaft) to the vortex states may be
neglected. We project the Hamiltonidf) onto the subgap
states of a clean vorte¥) by substituting

277d¢

W(r,t)= . Ea(q'),t)\lf(b(r—vt). (10

Defined in this way, the amplituda(¢,t) has antiperiodic

boundary conditions inp, a(¢+27)=—a(¢). The time
evolution of the coefficienta(¢,t) obeys the Schidinger-

f ’
2 (]

do )
+J'ZL¢¢'3(¢ )s

where the kernel

3
I—a
at

d

:_inﬁa"‘ T¢¢ra(¢,)

(11)

. d ,
(12
is produced by the vortex motion, and the kernel

Lygr = (W 4(r =VD|U(N) 7,/ W 4 (r = V1))

is due to the impurities.

The T kernel may be easily computed from the explicit
form (7) of ¥,. In the limitkg£>1, the matrix elemen(tl2)
takes the form

and we identify this term with the “Doppler shift.”
The impurity potential(r) is taken as a sum over point-
like impurities,

13

(14)

U(r)=> Vié(r—r,).

(15
Then the scattering kernel may be expressééds

— i 42ai ¢ —¢ E —2K([r; = vi|) mi (K g7 — K 4) (r; = Vi)
Lypr =21 A“sSin—— : Ve i g (K¢’ ~Kp) i =V,

2
(16)
Summarizing, we end up with the equation of motidri)
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s-wave scattering We are interested in the energy pumping
in this time-dependent model. Note that the physical energy
is given by the first and third terms in the evolution operator
(11), but does not include the second terin term) which
arises from the time derivative of the basis wave functions.
This discrepancy between the energy and the evolution op-
erator may be resolved by an appropridgime-dependent
gauge transformation

a(gp)=a(gp)e ke, (17)

This gauge transformation has a dual effect on the equation
of motion (11): First, it makes the energy operator coincide
with the evolution operator. The olikernel is now replaced

by a time-dependent one,

Ty =278(dp— ") wo(n XKV, (18)

wheren, is the unit vector perpendicular to the plattbis
gauge transformation resembles the one in electrodynamics
replacing a static electric field with a magnetic field linearly
growing in time. Second, thé& kernel is transformed as well
and the new kernel takes the form

Lyp=2i Azsinqbz;d) EI Ve~ 2K(ri=vihgitky —kyri,
(19

which differs from Eq.(16) by the cancellation of the veloc-
ity term vt in the last exponent.

The physical content of the two gauges may be under-
stood in the following way: The basis wave functidii$ are
quasiclassical plane wavést the wave vectokg) cut off by
the long-wavelength envelope ¢xg2K(r)] of the size of
order &. In the original gauggwith variablesa(¢,t)], this
basis was chosen by simply translating the bégisogether

with the vortex. In the new gaudeavith variablesa(,t)],
only the long-wavelength envelope is translated, without
shifting the phases of the quasiclassical plane waves.

This difference in matching phases of plane waves at dif-
ferent vortex positions produces two different descriptions of
the moving vortex. In the first gaudeariablesa(¢,t)], the
evolution equatior(11) contains impurities moving with re-
spect to the vortexfast oscillations inL ;). This descrip-
tion is similar to the approach taken in Refs. 10-12, a static
vortex subject to moving impurities. However, in those ref-
erences, thd term was omitted. We will show below that
omitting this term does not change the result for the dissipa-
tion in the moderately clean limit, thus justifying the ap-
proach of Refs. 10-12. In the second gaJgariables

a(¢,1)], there are no oscillating terms in,, [except for

the slowly varying envelopé(r) whose time derivative
may be neglected in most ca$eall the oscillations in the.
term in the first gauge may be removed by a single gauge
transformation, as all impurities move with respect to the

containing three terms: The first term describes the circulavortex with the same velocity and in the same direction. This

(“chiral” ) motion of the quasiparticle in the vort@x}'?The

fact has not been properly taken into account in Ref. 12,

second term is the Doppler shift due to the vortex motionwhich has led to an unphysical result. We shall comment in

and the third term describes the scattering off impuritiak-
ing pointlike impurities is equivalent to including only

more detail on the derivation of Ref. 12 in Sec. V; here we
just remark that the parallel motion of the impurities with
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respect to the vortex requires special care in the calculations
within the first gauge, but is automatically taken into account
in the second gauge.

Ill. CIRCULAR-UNITARY ENSEMBLE
OF THE QUASIPARTICLE LEVELS
IN THE DISORDERED VORTEX

In this section, we review the derivation of the two-comb
spectral statistics in the vortex from Refs. 11 and 12 and set
up the notation for the calculations in the later sections. For
the discussion of the spectral statistics in this section, we
take the vortex at restv&0). Then the Hamiltonian in the FIG. 1. Schematic representation of the evolution of the wave
equation of motior(11) contains only two terms, the kinetic function ¢(¢) in the circular-unitary-ensemble regime. The two-
term —iwyd/d¢ and the scattering terin,, (for a vortex at  component wave functiog(#) rotates with the angular velocity
rest there is no difference betwekp, andtwr). @o and scatters off impl_Jrities. Thg impurity sca_ttering is local and

At not very high impurity concentratiofsee Eq(38) be- is descrlb_ed by the unitary matricéd;, ac_cor(_jlng tp Eq(23).
low], the scattering kerndlwr may be approximated as a After r.ot.atlng by half a turn, the wave functlon. is projected back to
sum of two local termdthis approximation is due to the "€ ©origin with the help of the boundary conditigzb).
rapidly oscillating exponent in Eq16)],

lem onto the low-energy states in the vortex c(gee Refs.
N . 5 5 11 and 12 for a detailed derivatipriThe maximal scattering
L¢¢,=4wiwoz [Ji‘SqS,d)i 5¢,Y¢i+,,—Ji* 5¢'¢i+75¢,,,¢i], between the channels occursJat-1, which, according to
=1 Eqg. (21), corresponds to impurities located at a distance
@0 9,& from the core centétt
whereN is the number of impurities in the core, the param-  The boundary condition fogs(¢) going around the half
eters¢; specify the angular positions of the impurities, andcircle is

V5¢1,¢2 are 6 functions smeared over the widthp{— ¢,) 0)=—i ) (25

~ (k&) Y2 and antiperiodically continued im; and ¢, W(0)=—loyy(m).

— “5¢ 5.). Note that the regular- Thus the energy levels are determined by the eigenvalues of
172

(84,.0y+27= O+ 2mdy=
14pt+2m— 94 +2m the matrix—ioyM, where

ization (20) as a product of two smearetifunctions isllier—
portant for evaluating the scattering matf4) below:™ VI s S >
The effective strength of thizh impurity is M=My---MMy, =y ¢:1>0. (26
The full “scattering matrix”—ioyM is a unitary matrix with
Miﬂ_ée—ZK(ri)-%—ZikFri 1) the eigenvalues exp{nE/w), so that the energy leveB
[ )

woKr | ri are solutions to the equation

iAZVie*ZK(riHZikFri

where 4;=mV, is the Born parameter of the impuritan i
additional imaginary unit compared to the notation in Ref. 12 cod mE/ wg) = — Stroy M. (27)
is due to the antiperiodic boundary conditions emplgyed 2

The matrix elemente20) couple only angles with differ- e eyolution of the wave function() is schematically

ence close tar. Introducing the two-component vector shown in Fig. 1.
a($) In the moderately clean limit with a sufficiently largeut
— 0 22 not too largeé number of impurities in the core, the matik
() . ¢el0;m], (22) . . : . o
a(p+m) (and thus also-iayM) is random with a uniform distribu-

tion over the SW2) group. Such a random-matrix ensemble
is classified as the “circular-unitary” ensemble with dimen-
sion 22° The density of states and the level correlations may
be easily computed from E§27). For example, the average

Wi +0)=M, (b —0), (23  density of states is given by

the scattering becomes local #h The individual scattering
events in Eq.(11) then may be integrated separately and
formulated in terms of a boundary conditfén

where 2 2 E
<p(E)>— w—OSI 7Tw—0 . (28)
24 The spectrum consists of two combs of equidistant levels: A
level is characterized by the comb numissr =1 and its
The scattering matriM; is diagonal both in the limits of position in the combE.. (= *(Ep+ 2wek), whereEy is the
Ji<1l andJ;>1. The diagonal form oM; in the limit J; eigenvalue of the lowest level with positive energy<(H,
>1 is a consequence of the projection of the scattering prob<wg). The eigenfunctions can be written explicitly as

1 (1_|Ji|2 2J; )
SRl 2% 1=
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e k(¢):ei¢Ez,k/wo|v|¢O¢i(¢=o), (29 The last averaging is performed independently ovey
' ' andM; . In averaging, we first account for the rapidly oscil-

where . (¢=0) are the two eigenvectors efioyM, and  |4ting off-diagonal elements in Eq24) and arrive at Egs.
the scattering matrice! , ,, are defined as (34) and (35).

‘M $>¢ > > >¢', (30 The scattering rat€35) is linear in the impurity concen-

tration reflecting the fact that impurities act independently in
where the product is taken over all impurities between théhe regime of the circular-unitary ensemble. At the same
angles¢’ and ¢. Equation(30) introducesM 4 for ¢ time, Fhe impurity strengtld; is takgn .into account nonper-
> ¢'; furthermore, it is convenient to define the scatteringturbatively [cf. Eq. (24)]. The spatial integra(35) depends

matrix for ¢<¢' asM,, ¢,:M;, »- The symmetry of the on the impurity Born paramete=mV, (as above, we as-
SU(2) matrices ' ' sume that all impurities are of equal potential strength

For strong impurities with}~1, the scattering time is of
Mj& s =0yMy 40y (31)  the order of the bulk normal-state elastic mean-free time
’ ’ For weak impurities with9<1, the integral in Eq(35) has

allows us to translate easily between the eigenfunctions fog |ogarithmic dependence on the Born param@ter,
the two series of levels via

o ()= (). (32) 1 1 1. a7

In our calculations, we shall need not only the properties

of the spectrum, but also some statistical properties of th@ similar logarithmic behavior of the scattering rate was also
wave functions in the regime of the circular-unitary en-yarived in Refs. 6 and 7. The relaxation angiein Eq. (35)
semble. At any given poing and for any energy level, the pjays a central role in the context of vortex dissipation, as it
wave functiony/(¢) is a spinor pointing in a random direc- enters the expression for the friction coefficient and hence
tion. All directions are equally probable, allowing us to com- 5150 for the flux-flow conductivity. In Ref. 12, this quantity
pute equal-point correlation functions such as entered thewumeratorin the expression for the conductivity,
P while in our results it enters thdenominatolin the Bardeen-
<¢,T(¢,)Ua¢(¢,)¢1‘(d,)gﬁlp(d,»:%ﬁ, (333 SFephen forni.l). We comment in detail on our disagreement
with Ref. 12 in Sec. V and in the Appendix.
The physical meaning o is the correlation length of
(33h) the scattering matris , , and 7 is the corresponding scat-
tering time. We shall see later that it is the correlation func-
tion (34) that determines the rate of interlevel transitions. In

The correlations between wave functions at different Va"principle, one can derive a similar exponential decay “in the

ues ofc_;S may be_z expressed in terms of the properties of thg, andy directions” [with o, replaced byo, or o, in Eq.
scattering matrice$30). The angular correlations between (34)], in which case the correlation |engm(xy) is twice

scattering matrices decay exponentially, larger thang . “in the z direction.” This is due to the specific

Md)y(f":M. ..

In I

25,5

(W (D)o ™ (P YT (P)op(P))=

t _alo—¢'ll, form (24) of the scattering matri; .
My g0 Mg pr)=e Tz (34) In order to realize the regime of the circular-unitary
where random-matrix ensemble, it is necessary thhat v, which
defines the lower bound for the moderately clean regime,
1 1 160 % g |3(r)|? @5 woT<1. However, the region of the circular-unitary en-
—_—— = . r r —,
wor b, imp | [1+]3(r)[2]2 semble does not extend over the whole moderately clean

regime!? The additional restriction originates from the
andny, is the impurity concentration. In E435), we have  breaking of the instant-scattering approximati@g) in the

assumedfor simplicity) that all impurities have equal Born limit of too strong disorder. Indeed, the typical width of the
parameters, in which case the effective impurity strergth  smeareds functions in this equation can be estimated as
as given by Eq(21) becomes a function af and is denoted 54~ 1/,/k:£ (that corresponds to an impurity at the distance
J(r) in Eq. (35). In order to derive Eqs(34) and (35) one  of the order of¢ from the vortex center On the other hand,

takes a small increment ¢M ;’(b’O.ZM s,¢') IN ¢ and aver-  the number of impurities in the core N~ n,,&

ages over a single impurity scattering matrix, ~ 1wy 9?. The solution for the spectrum discussed above

is justified as long as thé functions in Eq.(20) do not
overlap, which is equivalent to the conditioN §¢<<1.
Thus, the circular-unitary ensembile is realized only in a rela-
tively narrow range of disorder strengths

1%
+
£<M¢'¢,UZM¢’¢7>
” t
=2nimpJ'0 ridri[<M¢’¢/MiT0'ZMiM¢’¢r>

wqo 1 2
—<M;¢IUZM¢,¢'>]- (36) n 1/19< Tn<19 VAwg (39)
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[we assume that the Born parametek 1 and make use of and we will present a microscopic derivation of this result
Eqg. (37); for 9~1 one should replace Ind/by 1]. For  below.

stronger disorde(i.e., larger scattering rate4)) or smaller For model Hamiltonians from the three Wigner-Dyson
Born parameterd, the instant-scattering approximati¢20) random-matrix ensemblé8, dissipation was calculated by
fails and the circular-unitary ensemble crosses over to th&Vilkinson'®26 in the regimes of smally(<v) and large
classC ensemblé®*> A phenomenological approach to this (v>vg) velocities(in the limit y;,=0). He finds that if the
crossover has been discussed in Ref. 22 and the results BamiltonianH(X) of the system depends on time through

numerical simulations are available in Ref. 23. X=wt, then the energy dissipation is determined by the vari-
ance of the level velocityC(0)=((JE;/9X)?)/ w5 normal-
IV. TWO REGIMES OF DISSIPATION ized by the mean level spacin@,. In the continuous-

spectrum regime specified by>v=w,C ¥40), the
The time evolution of the core states is described by Egenergy dissipation rate as given by the Kubo form,

(11). Since the evolution operator is nonstationérg., ex-
plicitly time dependent it causes transitions between levels B
with different energy. In a fermionic system, the rate of WKub0=§7rC(O)v2, (40)
downward transitions is suppressed compared to the rate of
upward transitions due to the Pauli exclusion principle, lead- . . .
ing to an increase of the average energy with time. The enqﬁi;rr'be(;;"S;Olgsnga;nﬂn?esfth f;)r4the orthoglorm:la)th
ergy pumped into the system will finally be transferred to the'"ary ' ymplectic £=4) ensembles. In the

thermal bath via the interaction with phonons or other Softdlscrete-spectrum regime, at<uvy, the result crucially de-

degrees of freedom, thus producing a finite dissipation. pends on th? Ievel-repgjlsmr_] paramegerwhich det_ermlnes
There are two different mechanisms of dissipation de—the probap|lltyP(s_)ocs to find tWO. Ieyelg at a d'.StanC'e
pending on whether the individual energy levels can be re-S o In th|s.;:$uat|on, the energy dissipation rate is given by
solved or not? If the discrete spectrum is smeared into athe expressi

continuous one, the energy pumping can be calculated with

the help of the standard linear-response Kubo formtikhis Worp (B+2)72, (41)
regime is naturally realized when theelastic widthy;, of o . )

an energy level exceeds the mean level spagiggOn the hence the dissipation is super-Ohmic f_or the_ Gaussian or-
other hand, the spectrum may turn out effectively continuoughogonal ensemble, while for the Gaussian unitary ensemble
even aty,<w, if the time dependence of the evolution op- it remains Ohmic withW,=7C(0)u?, exactly coinciding
erator on the right-hand side of E€l1) is so fast that it With Wius, despite a very different mechanism of dissipa-
destroys the instantaneous adiabatic spectflimthis case, tion. _ _ S

of the spectrum exceeds, and plays the role of the effec- for the vortex motion in th(_a regime Qf the Koulakov-Larkin
tive level width. In the opposite case, whep , v, <, the two—c'o'mb spectrum? bpth m_th.e limits of small qnd large
spectrum is essentially discrete and the dissipation is due téelocities, thus extending Wilkinson's considerations to the
rare Landau-Zener transitiorigaking place when two levels case of circular-unitary ensembles.

come very close to each other.

In a normal metal at low temperatures, the inelastic  \/ piSSIPATION IN THE DISCRETE SPECTRUM

widths_ due to th(_a electron-electron and electron—pho?on in- (LANDAU-ZENER REGIME )
teractions are given byye.~T?/Er and yepn~T/0F, . _ S
respectively’ (O, is the Debye temperatureSince ye. ¢ is In this section, we calculate the dissipation for the two-

of the order ofw, already aff ~ A, it does not contribute to  ¢OmMb level structure described in Sec. Il at small velocities.

the level smearing at lower temperatures. Furthermore, fowe will work in the “tilded” basisa(¢,t) introduced in Eq.

the states localized in the vortex core the interaction with(17), where the energy coincides with the expectation value
phonons appears to be strongly suppressed compared to thethe evolution operatofll), with T, andL 4,/ substi-
normal-state raté® one of the main reasons is that the qua-tuted by their tilded counterpart48) and (19). In the low-
siparticles with energyuw,<A are composed of nearly velocity limit, the energy is pumped into the system when
equal mixtures of electron and hole componédis., <ui> two levels come very close to each other and a nonadiabatic
%<vi>, cf. Eq.(6)] with negligible net charge. Thus, at suf- Landau-ZenefkLZ) transition becomes possible. Due to the
ficiently small temperatures<A, the inelastic width of the Symmetry of the two-comb spectrum, the rdkg; of such
core statesy,,<wo and the regime of dissipation is deter- transitions is the same for each neighboring pair of levels.
mined solely by the vortex velocity. In Ref. 10, the crossoverWe Wil calculateR, ; by considering the lowest level with

velocity v separating the regimes with discrete and continu0sitive energy and its mirror image with energy . For
ous spectra was estimated as simplicity, we assume that the vortex moves in thdirec-

tion, vy=0.
Following the logic of Ref. 18, we diagonalize the Hamil-

_ % tonian att=0 and restrict it to the 2 2 matrix involving the
Uk (39 _ .
VKl pair of states considered,
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e+ hllt h12t

H(t)= (42)

1t —e—hgt)’

whereh;; are the elements of the matri/Jt [neglecting
the quadratic termx (9%H/at?)t? is justified in the Landau-
Zener regime, since the duration of a nonadiabatic transitio

is proportional to the gap of the avoided crossing and is

PHYSICAL REVIEW B67, 014521 (2003

(hy _ ¢, ¢
——=— o)) =o—. 49
(ko) ((Ylow)?)=5" (49)
Analogously, with the help of Eq33b) we obtain
hyg? .
| d) et -2 s
(wokpv)?

small atv <v]. The instantaneous adiabatic spectrum takes

the form
E(t)== VAL +AX(t—t2)?, 43
where
82|h12|2 ehyy
AEZ_T' A’=hi+|hgl?  tz=— a2
(44)

Equation (43) describes an avoided crossing with the
minimal distance(Landau-Zener ggp2A,, between the
spectral branches realized &t ,. The probability of
the Landau-Zener transition at such a crossing
exp(—mAZ,/A). The mean rate of transitions is given by

RLz=<5(th)eXP< )>

where the role ofs(t, ;) is to count each avoided crossing
once. The average in E45) is taken over the distribution
of the parameters, hy;, and h,, describing the avoided
crossing. The energy is expressed through the transfer ma-
trix M according to Eq(27). The coefficientd,; andh,, are
the matrix elements of the perturbati¢b8) over the exact
wave functionsy.. (¢)= ¢ o(¢) [which depend on the tra-
jectory M, ¢ via Eq. (29)],

2
Lz
— T

A (45)

=d
h11: wokFU jO 7¢¢1(¢)UZ¢+(¢)COS¢, (46)

=d
= ookes [ Lyl (D)o (pcoss. @

We come to the crucial point: The quantitieshq;, and
h, have different dependencies on the transfer matrjx, .

In the moderately clean limit, when the number of impurities

in the core is sufficiently large ané,<1, the matrixM 4 o
performs many rotations over the &) group. Therefore,
we conclude thai) €, hy;, andh,, are uncorrelated, and)
the distribution oth,4 andh,, is Gaussian. We further calcu-
late the variances di;; andhy,. For(h3,) we obtain with
the help of Eq(34),

!

d¢ d )
<h§D:(woka)zf ?d)% COS¢COS¢’e*|¢*</> I/,
0

XYL (P)oh () - W (P)op(h)). (49

Integrating overp— ¢’ and averaging over the sping( ¢)
according to Eq(333 we find

In the same way it can be shown thdiy;h,5)=0, thus
proving the statistical independencehyf andh,,. We con-
clude thath,,, Reh,,, and Imh,, are independently distrib-
uted with the same distribution
3mh? )
. (51

/3 1
M=) — —— -
P 2¢,; wokgv eXF{ 2¢ (wokev)?

The distribution function foe is provided by the density of
states(28), in the limit e<wy, P(e) =272/ w3,

Averaging Eq.(45) over g, hy;, andh, with the distri-
butions P(¢) and P(h), we obtain for the mean rate of
Landau-Zener transitions

is

(52)
The energy dissipation rate is given W= woR ;= 7v?
with the vortex viscosity

E¢T kéwor (53)
As defined by Eq(53), 7 is a two-dimensional viscosity. In

a layered superconductor, it determines the friction fdfce

— nv exerted on the vortex from excitation of quasiparti-
cles within one layer.

The statisticg51) of the matrix elements afH/Jt deter-
mines the sensitivity of the spectrum to the vortex motion
and allows one to find the critical velocity, separating the
regimes of discrete and continuum spectra. The discrete
spectrum can be resolved if the change of the Hamiltonian
during the timew, !, 8H~h/w,, is smaller thano,. Taking
for h the dispersion of the distributiof®1), we find for the
critical vortex velocity

Uk~ (54)

Wo
ke,
coinciding with the estimat€39) found in Ref. 10.
Comparing with Ref. 12, we find that our res@i3) for
the viscosity is smaller by a factoﬁf and the expression
(54) for vk is larger by the factor #.. In Ref. 12, following
the analysis in Refs. 10 and 11, it was assumed that the
dissipation is produced by impurities moving with respect to
the vortex, equivalent to neglecting the Doppler-shift term
T4 in EQ. (11). In order to identify the origin of the dis-
crepancy in the results and verify the validity of omitting the
Doppler shift, we reconsider below the treatment of Ref.
12—we will see that the source of the disagreement is not in
the neglect of the Doppler-shift term but in the neglect of
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cross correlations between the motion of different impuritiescome possible. In this limit, the energy dissipation can be
To demonstrate this, we adopt the approach of Refob#it-  calculated with the help of the Kubo formula; as in Sec. V
ting the Doppler-shift termand recalculate the correlator of we will use the tilded basi¢17). Neglecting the slow time

the spatial gradients of the matri4,”® dependence ot ,, , we write the evolution operator as
1 M H(t)=Hy+It, whereH, is the Hamiltonian of the vortex at
C= ) < (tr W) > (55  rest and =T/t takes the form

from which the viscosity follows viay=2 C/7r. Comparison _ , _
between Eqs(55) and (40) shows that the quantity (2F)C Lo =2m5(= ") (¢),  1($)=wokrvCOSe, 61)
plays the role of the correlation functid®(0).

The matrixM specified in Eq(26) is a product of transfer - where we again assumed thgt=0. The energy dissipation
matrices of individual impurities. Therefore, there are tworate
contributions to the correlatdb5), one originating from de-
rivatives over the coordinates of the same impufitiagonal
par) and a second one from derivatives taken on different W———(t| H(t)|t> (62)
impurities (off-diagonal par,

1 M oM is calculated as the linear response to the térmwith the
Caing™ 7 Z tr > tr x| (56)  help of the Kubo formula
0
1 IM oM _ - ,
O <tr%tr &_>, - w=i [ vavlme) oo, 69
] i j
The diagonal part is given b¥ where

k¢ 7 —szl Ui(g,t) ¥ dé 64

The cross term, expressing the correlated nature of the mo; JindW (,1) is a second-quantized operator in the interaction
tion of the impurities with respect to the vortex, has been - P

representatlon The latter can be rewritten in terms of the
missed in Ref. 12. Its calculation is presented in the Appen
dix and the result takes the form (exact disorder dependereigenfunctions,(¢) and eigen-
valuesk,, of the HamiltonianH,,

7Tk,2:
Cotins™ = 4 57 59 F(p0)=3 (e, (69

We thus see that the two contributiol,g and Coggiag
nearly cancel each other and the net sensitivity of the spe(Wlth ¢, the corresponding annihilation operators. Averaging
trum to the vortex motion appears to be significantly lowerover the initial state of the vortex at refgo thata,(¢)

than that found in Ref. 12, coincides witha,(¢)], one arrives at the expression
7Tk|2:¢ 0 ’
- T : doddé
e (©0 w=i [ var [ S g
- (27)

where we employed the conditiop,<1 of the moderately

clean limit. Using Eq.55), one recovers the resus3) for XE (Ne—N)ag(d)at (¢ )am(d')ak ()

the vortex viscosity. The above consideration not only cor- m

rects the result of Ref. 12; in addition, it serves as a micro- , ,

scopic justification of the model adopted in Refs. 10-12, x el (B Em(t =), (66)
where the dissipation is due to impurities moving through the

core and the Doppler-shift terfin Eq. (11) is neglected. ~ Wheren,=(cfc,) is the distribution function at the energy
Ey. This expression can readily be represeritéd e.g., Ref.

V1. DISSIPATION IN THE CONTINUUM SPECTRUM 29) in terms of the Green functions
(KUBO FORMULA )

If the vortex velocityv exceedw ¢ the discrete spectrum GRA(& ¢'):E M (67)
is smeared and transitions between non-nearest levels be- BT n E—Epxid’
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(L, (0) ML, 60, M 4 0 s 0) YL (OIM ), (M 1 0 5/ (0))

1( d¢de’ [ dE on(E) , ,
w3 | 5= e | ($1(8)[GE#e")

2
(277) :tr<M;,'¢UZM¢r,¢UZ>- (73)
A ’ R ' A ’

~Ge(¢¢)[Ge(¢'d)—Ce(9'¢) . 68 This average is calculated with the help of E8¢) yielding
The above formula for the dissipation rate is not restricted to
the regime of the circular-unitary ensemble, but is valid in kE m , , +
the whole moderately clean limit regime as longvasvy . = Efo d¢de’cose cosg't(M,, oMy, 402)
In particular, one can easily recover the result of the standard
quasiclassical analysis by assuming theapproximation: 1,
within this approach the Green function is diagonal in the = 5 krwoT. (74)

momentum representation,
The form of the above result coincides with E@0) calcu-
lated within ther approximation. The microscopic expres-

(GR,A(M»: 1 _ (69) sion for the elastic relaxation timeis given by Eq.(35). In
E £ . i case the inelastic relaxation time is shorter tharit substi-
T Wok =57 tutes the latter in Eq(74).

To conclude this section we mention that the same result
and evaluating the integral in E68) one finds the energy (74) can be obtained in the model where the Doppler-shift
dissipation ratewW= 7,02 with the vortex viscosity coeffi- term T44 In Eq. (11) is neglected and the dissipation is due
cient to the motion of impurities with respect to the vortex. Within
that model the energy dissipation rate is calculated as a linear
response to a change in the impurity positions. The deriva-
tion formally repeats the one presented above but with the
operator ,, =v dL 4, /9. Performing the same manipula-
tions leading to Eqs.71) and(74) we obtain
The 7 approximation is the simplest approach to the prob-

1 2
ﬂTIEkaoT. (70)

lem where all spectral correlations are neglected. Below, we +

. . . 1 dM" oM
will calculate the vortex viscosity for the case of the 7= — t— —), (75)
Koulakov-Larkin two-comb statistics and check how the 4w\ X IX

presence of the two-comb correlations in the energy levels
modifies the result70). To this end we rewrite Eq68) in  whereM is the product of scattering matrices defined in Eq.
terms of the wave functiongs,(¢) introduced in Eq(29), (26). The above correlation function for the random (8)JJ
matrix M can be related to the correlation functi@b) and
is equal to &. Therefore, Eq(75) exactly coincides with its
1 D dedeo’ [ dE dn(E) low-velocity analog(55) and reproduces the res(it4).

W=-3 27 OE

2
s,s’ kk’ T
VIl. DISCUSSION

XJ dtdt'e®I(#)I(¢") The main conclusion of this paper is that the Bardeen-

Stephen expression for the flux-flow conductivity is ex-

x(z/;l,k,(cb)azzpsk(qS) . w;rk(gb’)o'zljls/k/(qﬁ’)),(?l) tremely insensitive to the details of the level correlations in

the vortex core. We calculated the energy dissipation rate for

where®=E(t—t') — Egt+Egst'. We first reexpress the the case of the Koulakov-Larkin two-comb level structure
wave functionsjq( ¢) via Eq.(29) and perform the summa- when the spectral correlations are most pronounced. Such a

tion overk andk’ according to the summation formula statistics, classified as the circular-unitary ensemble of di-
mension 2, is obtained for layered superconductors within
w the region of the moderately clean limit specified by Eq.
i T 38). We found that the vortex viscosity is the same for the
Est= —glEsot S(t— 72 ( . ) )
; e woe ) m;w (t=m/ o) (72 regimes of discreter(<vk) and continuum#>uvy) spectra

and coincides with the resulf0) of the phenomenological
(which produces a double infinite sum &functions oftand  approximation. The viscosity determines the flux-flow dis-
t’). We cut off the integrals ovearandt’ at some time scale sipative conductivity via the standard relatiomr,,
smaller thanm/wy—such a cutoff is equivalent to assuming =ecz/7B. Assuming a cylindrical Fermi surface, we arrive
a smearing of the energy levels with widths larger tlagyn  at the resulf1) obtained previously via several quasiclassical
Under this assumption, only one term of the double infiniteapproache$:’

sum survives witht=t'=(¢— ¢')/wy. Next, the integra- Despite that we found the same result gk in the limits
tions overt, t’, andE can be trivially performed. Finally, we of small and large vortex velocities, it is worth emphasizing
sum overs ands’ and arrive at that the physics of energy dissipation is quite different in the
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two limits. In the Kubo regime >vg) the energy is Russian Academy of Sciences, the Russian Ministry of Sci-
pumped continuously, whereas in the Landau-Zener regimence, the Russian Science Support FounddfibA.S.), and
(v<vy) it is absorbed in discrete portions of siag. The the Swiss National Foundation. M.A.S. thanks ETHrigh
equivalence between the approximation and the result of for hospitality.
the exact microscopic treatment is not very surprising in the
Kubo regime, as in this limit it is determined by the net APPENDIX
sensitivity of the spectrum to the vortex displacement rather
than by interlevel correlations. On the other hand, in the Here, we calculate the off-diagonal correlation function
Landau-Zener regime, this equivalence is a matter of coinciC q4iaq defined in Eq(57). To this end we divide the angle
dence: it relies on the fact that the vortex Hamiltonian be-interval[0,7] into many small piecesp* 1), ()] of width
longs to the circular-unitary universality class characterizeds¢—0 so that each piece contains one impurity at maxi-
by a level-repulsion paramet@=2. mum. The transfer matrix of thkth interval is hence either

The other outcome of the present work is that it providesv »0,pk-1=1 (N0 impuritieg or M 4w 4«-1=M; (if the
a justification for neglecting the Doppler-shift term, Eq.  angle of theith impurity &; €[ ¢*~ 1, 6®7]). Then
(12), that was implicitly assumed in earlier papé¥s'?
Without theT term, the system is equivalent to a vortex at
rest with impurities moving through its core. The dissipationC
is then related to the change of the level positions due to the
motion of the impurities. On the other hand, theéerm de-
scribes the electric field in the core, which is the source of XM a1 dr M (9M¢(P>,¢(P‘1)M .,
energy dissipation in the Bardeen-Stephen model—omitting .0 M, o(P) ax (P10
this term is a bit confusing. Nevertheless, our analysis indi- 1
cates that the vortex viscosities calculateith and without _ t v
this term coincide in the moderately clean limit. One may 4 kE#:p {r RY(kytr RM¢(p_1)'¢(k)Y(p)M‘/’(pfl)'¢(k)>'
expect, however, that a correct treatment of this term is cru-
cial in the calculation of the Hall conductivity and in the
superclean limit. _

In this paper, we considered a strictly two—dimensional\l\/her‘ER M0, M7, 400 and
superconductofor layered superconductor with negligible
interlayer coupling In the case of the Koulakov-Larkin IM 49 gk-1) 4
circular-unitary-ensemble statistics, the effect of interlayer Y(k)= TMd)(k),d,(kfl)-
hopping is small provided that the effective quasiparticle
temperature in the cord@ e, is smaller tharwg(mg/m,p),
wherem;/m,, is the effective mass anisotropy. This condi- - + IM 4, g(p-1)
tion ensures that the interlayer hopping amplitude is always Y(P)=Mym go-0— (A2)
smaller thanwy and can be neglected. This behavior is to be

contrasted with the one for the cla8gandom-matrix statis-  The representatiofA1) is suitable for averaging over disor-
tics realized in the moderately clean case for weak impuritiegjer. since one can independently average the matReds
(9<1) and in the dirty A7<<1) limit. In that case, the ¥, andM -1y 0. The statistical independence ¥{k)
interlayer coupling leads to tunneling from thé¢h level in @+ <’ P75t )
one layer to thenth level (with m#n) in the adjacent layer, Y(p), andM 4e-, 4w follows from the fact that the inter-
thereb . : i vals[ kT 0] [ pP~D] and[ pP~ D, ()] do not
y opening an interlayer channel for energy dissipation:. . .
The competition between the intralayer and interlayer chanQVérap- As we wil e b(epl)ow, the correlatgil) is essen-
nels may lead to a strong deviation from the Bardeenially nongero at|(% — ¢~ ¢,. The mafrixR, which
Stephen formulal) and even to hysteretic behavior of the COUPIESS™ and¢™ through the poingy =, is the product
current-voltage curvé® On the contrary, the two-comb spec- ©f & large number 0{ ["f)‘t”?d)mi and loses all correlations
trum is absolutely rigid: theth level in one layer can have Within the interval[ ¢~ %, ¢®'].
an avoided crossing only with theth level in the adjacent ~In calculating(Y(k)) and(Y(p)) with the help of Egs.
layer and the tunneling between these two levels does nd24) and(21) only the fast phase af; should be differenti-

result in dissipation. ated,

1 oM A, p(k—1)
off-diag™ 7 kz#:p tr M L va—

(A1)
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with the last relation following from the definitiof85) of the

angle coherence lengt#h,<1. Taking the continuum limit

85¢—0, we obtain

k2 (=
Coﬁ-diag:r’bzfo d¢,dp,c08ph,C0SP,

X(tr Rotr RMY, 4 oMy, 4).  (Ad)

Averaging oveM , . according to Eq(34) and integrating

PHYSICAL REVIEW B67, 014521 (2003

over (¢p1+ ¢5)/2 we find

ke “dp el
Coﬁ_diag=r¢2(tr Ro,tr Ro,) jo doe COS@,
' (A5)

where the upper limit is substituted by infinity due to the fast
convergence of the integral. Finally, averaging oReuni-
formly distributed over the S(2) group and evaluating the
remaining integral, we arrive at E¢G9).
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