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Vortex viscosity in the moderately clean limit of layered superconductors
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We present a microscopic calculation of the energy dissipation in the core of a vortex moving in a two-
dimensional or layered superconductor in the moderately clean regime. In this regime, the quasiclassical
Bardeen-Stephen result remains valid in spite of the strong correlations between the energy levels. We find that
the quasiclassical expression applies both in the limit of fast vortex motion~with transitions between smeared
levels! and in the limit of slow vortex motion~with nearly adiabatic dynamics!. This finding can be related to
the similar result known for the unitary random-matrix model.
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I. INTRODUCTION

At low temperature, the energy dissipation in vortex co
is the main source of resistivity in the mixed state of type
superconductors.1 If a supercurrent flows through a supe
conductor, it exerts a force on the vortices. Unless pinned
impurities or inhomogeneities, the vortices are brought i
motion, which in turn leads to dissipation. Depending on
level of disorder, the vortices may move at different ang
with respect to the direction of the supercurrent. At we
disorder, the vortices move together with the supercurr
~‘‘ballistic limit,’’ with the Hall angle close top/2). At suf-
ficiently strong disorder, the vortex motion is directed p
pendicular to the supercurrent~‘‘dissipative limit,’’ small
Hall angle!. Both limits are well understood within the qua
siclassical description.2–7 A simplified approach describing
the dissipative limit goes back to the theory of Bardeen a
Stephen treating the vortex as a region of normal phase
side a superconductor.8 In spite of neglecting the structure o
the quasiparticle excitations in the vortex core,9 the Bardeen-
Stephen theory gives the same result~up to a numerical fac-
tor! as the accurate quasiclassical calculation.2–7

It has been recently suggested that the microscopic st
ture of the core excitations may play a much more promin
role in that part of the dissipative regime where the exc
tion spectrum remains discrete~sharp quasiparticle levels!,
specifically in layered superconductors.10–13 In the clean
limit ~i.e., for scattering rates\/t much smaller than the
superconducting gapD), the motion of quasiparticles in th
vortex core is ballistic: they cross the vortex core many tim
before scattering off impurities. Therefore in this limit, th
spectral properties are sensitive to the details of disorde
alization. In the superclean regime (\/t!D2/EF , whereEF
is the Fermi energy!, the levels inside a two-dimensiona
vortex split into two sets~‘‘combs’’ ! of equally spaced
levels.11 The transformation of this correlated spectrum in
a featureless uncorrelated one with increasing disorder
ceeds in distinct steps: within the moderately clean reg
(D2/EF!\/t!D) a new intermediate region (D2/EF!\/t
!DAD/EF) has been found11,12 where the comb structur
remains preserved but is randomly shifted in energy~the
number of impurities in the core has to be small enough
preserve the combs, while being large enough to random
0163-1829/2003/67~1!/014521~11!/$20.00 67 0145
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the overall shift!. Increasing the impurity concentration fu
ther ~already in the moderately clean limit for wea
impurities,14 and ultimately in the dirty limit15!, the comb
structure is destroyed with a crossover to the classC random-
matrix ensemble.16

Keeping within the moderately clean regime with a d
crete spectrum, in two-dimensional~or layered! supercon-
ductors there further exist two limits of dissipation:10 The
first one applies to the slowly moving vortex with a discre
quasiparticle spectrum~‘‘discrete-spectrum regime’’!, where
the dissipation is due to Landau-Zener transitions betw
individual levels.17,18The second limit is with levels smeare
into a continuum either by the vortex motion or by inelas
processes~‘‘continuum-spectrum regime’’!; the dissipation
then is given by the linear-response Kubo formula.19 At low
temperatures, the inelastic smearing can be neglected an
crossover between these two regimes is controlled by
vortex velocity with the characteristic velocity given byvK

;(D/pF)/AkFl ~here,D is the superconducting gap andl
denotes the elastic mean free path10!.

In the framework of random-matrix models with time
dependent Hamiltonians, the dissipation in the discre
spectrum and continuum-spectrum regimes was consid
by Wilkinson.18 He finds that, in the case of the unitar
Wigner-Dyson ensemble, the linear dissipative response
mains valid in the whole range of velocities, both in th
continuum-spectrum~high-velocity! and in the discrete-
spectrum~low-velocity! regimes. Based on this fact and o
the similarity between the unitary and classC ensembles, it
was shown that with the classC level statistics the dissipa
tion rate nearly follows the Bardeen-Stephen predicti
even in the limit of small velocitiesv,vK where the quasi-
classical description is no longer valid.10 Contrary, it was
claimed in Ref. 12 that the additional correlation betwe
levels ~the ‘‘two-comb’’ structure! may lead to an anoma
lously high vortex viscosity in the moderately clean regim
in the low-velocity limit.

In our paper, we reconsider the problem of the vort
viscosity in a two-dimensionals-wave superconductor, tak
ing full account of the discreteness of the vortex spectr
and of the microscopic structure of the quasiparticle leve
We assume the moderately clean limit with an appropri
number of impurities in the core, such that the spectr
©2003 The American Physical Society21-1
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possesses the randomly shifted two-comb structure~the pre-
cise condition is given in Sec. III!. We find that in spite of the
level correlations derived in Refs. 11 and 12, the vortex v
cosity does not differ from the well-known quasiclassic
result2–7 for three-dimensional superconductors. Within t
same microscopic model we consider separately the disc
spectrum and continuum-spectrum regimes of dissipation
both limits we arrive at the Bardeen-Stephen result for
dissipation,

sxx5
ecnv0t

B
;sn

Hc2

B
, ~1!

wheren is the electron density,\v0;D2/EF is the spacing
between the levels in the core,9 andB is the magnetic field.
The two-comb level structure found in Refs. 11 and 12 m
be classified as the circular unitary random-matrix ensem
of dimension 2.20 Therefore, our findings may be consider
as a generalization of Wilkinson’s results18 to circular en-
sembles. We also find the scattering timet for quasiparticles
in the core in thes-wave approximation: for a weak impurit
strength, the effective 1/t is larger than the bulk scatterin
rate 1/tn by the logarithm of the impurity strength. A simila
logarithmic correction was previously derived in Refs. 6 a
7.

The paper is organized as follows. In Sec. II, we prep
for the calculation by deriving the microscopic Hamiltonia
projected onto the relevant subgap states in the vortex c
In Sec. III we review the results of Refs. 11 and 12 on
circular random-matrix ensemble appearing in a disorde
vortex at the intermediate level disorder. We then desc
the two limiting regimes of dissipation~Sec. IV!, the
discrete-spectrum and the continuum-spectrum regimes,
set up the stage for the calculations. In Sec. V, we treat
case of the discrete energy spectrum~low velocities and no
inelastic level broadening!, while Sec. VI is devoted to the
opposite continuum-spectrum limit where the levels
broader than the interlevel distance. Finally, we discuss
findings in Sec. VII. The sensitivity of the energy levels
the vortex displacement is calculated in the Appendix.

II. MICROSCOPIC HAMILTONIAN OF THE MOVING
VORTEX

Before discussing the moving vortex, let us review t
excitation spectrum of a clean two-dimensional vortex
rest. The corresponding wave functions are given by the
lutions to the Bogoliubov–de Gennes equations

S H0 D~r !

D* ~r ! 2H0
D S u

v D 5ES u

v D ~2!

where H05p2/2m2EF . We assume an axially symmetr
vortex with the order parameterD(r )5D(r )eiu, where the
modulus of the order parameter depends only on the ra
componentr and the phase winds with the angular coor
nate u. We neglect the magnetic field in the vortex co
assuming a large magnetic penetration depthl@j, where
j5vF /pD is the superconducting coherence length~here
and below we choose units with\51). In the quasiclassica
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limit kFj@1, the spectrum and the eigenfunctions may
easily found.9 The eigenvalues form a spectrum of equid
tant levels

Em5mv0 , ~3!

where the angular momentumm takes half-integer values
m5n11/2, and

v05

E
0

`D~r !

kFr
e22K(r )dr

E
0

`

e22K(r )dr

, ~4!

K~r !5E
0

r D~r 8!

vF
dr8; ~5!

r is the distance from the core center. The basic electro
energy scale in the vortex core takes the valuev0;D2/«F ,
up to a possible logarithmic prefactor ln(D/T) due to the
shrinkage of the vortex core at small temperaturesT
~Kramer-Pesch effect21!. The eigenstatesCm5(um ,vm)T

take the form

Cm~r !5AS Jm21/2~kFr !e2 i (m21/2)u

Jm11/2~kFr !e2 i (m11/2)uD e2K(r ), ~6!

whereA 25(4kF
21*0

`e22K(r )dr)21;kF /j is the normaliza-
tion factor, andJn(x) are the Bessel functions.

In the following, we will be interested in processes
energies far below the superconducting gap and thus pro
all the operators onto the subgap states~6!. It will be conve-
nient to take the Fourier transform of these eigenvectors
the variablem and introduce a new angular variablef label-
ing the direction of the quasiclassical motion of the quasip
ticle,

Cf~r ![(
m

Cm~r !eimf5AS eif/2

e2 if/2D e2K(r )eikfr, ~7!

where we introduced the vectorkf5kF(sinf,2cosf) point-
ing perpendicular to the direction specified by the anglef,
with absolute valuekF . The plane-wave exponent in Eq.~7!
is thenkfr5kFr sin(f2u). This basis of wave functions ha
a very simple structure: in addition to the phase windi
exp(6if/2) ~providing the antiperiodic boundary condition
in f), these wave functions are plane waves in the direct
of the wave vectorkf restricted to a region of sizej around
the vortex center. Note thatCf(r ) is not an eigenfunction of
the Hamiltonian~2!. Prepared in such a state att50, the
wave function will rotate in thef basis according to
C(r ,t)5Cf2v0t(r ).

We now turn to the problem of the moving vortex wit
impurities. It can be described by the time-depend
Bogoliubov–de Gennes equations

i
]

]t
C5H~ t !C, ~8!
1-2
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VORTEX VISCOSITY IN THE MODERATELY CLEAN . . . PHYSICAL REVIEW B67, 014521 ~2003!
whereH(t) is the Hamiltonian of the vortex at the positio
r5vt with v the vortex velocity,

H~ t !5S H01U~r ! D~r2vt !

D* ~r2vt ! 2H02U~r !
D , ~9!

andU(r ) is the potential set up by the impurities.
In the clean limit (Dt@1), the admixture of bulk state

~with energies greater thanD) to the vortex states may b
neglected. We project the Hamiltonian~9! onto the subgap
states of a clean vortex~7! by substituting

C~r ,t !5E
0

2pdf

2p
a~f,t !Cf~r2vt !. ~10!

Defined in this way, the amplitudea(f,t) has antiperiodic
boundary conditions inf, a(f12p)52a(f). The time
evolution of the coefficientsa(f,t) obeys the Schro¨dinger-
type equation

i
]

]t
a52 iv0

]

]f
a1E df8

2p
Tff8a~f8!

1E df8

2p
Lff8a~f8!, ~11!

where the kernel

Tff85^Cf~r2vt !uS 2 i
]

]t D uCf8~r2vt !&5 iv^Cfu“uCf8&

~12!

is produced by the vortex motion, and the kernel

Lff85^Cf~r2vt !uU~r !tzuCf8~r2vt !& ~13!

is due to the impurities.
The T kernel may be easily computed from the expli

form ~7! of Cf . In the limit kFj@1, the matrix element~12!
takes the form

Tff8522pd~f2f8!kfv ~14!

and we identify this term with the ‘‘Doppler shift.’’
The impurity potentialU(r ) is taken as a sum over poin

like impurities,

U~r !5(
i

Vid~r2r i !. ~15!

Then the scattering kernel may be expressed as12,14

Lff852iA 2sin
f82f

2 (
i

Vie
22K(ur i2vtu)ei (kf82kf)(r i2vt).

~16!

Summarizing, we end up with the equation of motion~11!
containing three terms: The first term describes the circ
~‘‘chiral’’ ! motion of the quasiparticle in the vortex.9,11,12The
second term is the Doppler shift due to the vortex moti
and the third term describes the scattering off impurities~tak-
ing pointlike impurities is equivalent to including onl
01452
r

,

s-wave scattering!. We are interested in the energy pumpin
in this time-dependent model. Note that the physical ene
is given by the first and third terms in the evolution opera
~11!, but does not include the second term (T term! which
arises from the time derivative of the basis wave functio
This discrepancy between the energy and the evolution
erator may be resolved by an appropriatetime-dependent
gauge transformation

ã~f!5a~f!e2 ikfvt. ~17!

This gauge transformation has a dual effect on the equa
of motion ~11!: First, it makes the energy operator coincid
with the evolution operator. The oldT kernel is now replaced
by a time-dependent one,

T̃ff852pd~f2f8!v0~nz3kf!vt, ~18!

wherenz is the unit vector perpendicular to the plane~this
gauge transformation resembles the one in electrodynam
replacing a static electric field with a magnetic field linea
growing in time!. Second, theL kernel is transformed as we
and the new kernel takes the form

L̃ff852iA 2sin
f82f

2 (
i

Vie
22K(ur i2vtu)ei (kf82kf)r i,

~19!

which differs from Eq.~16! by the cancellation of the veloc
ity term vt in the last exponent.

The physical content of the two gauges may be und
stood in the following way: The basis wave functions~7! are
quasiclassical plane waves~at the wave vectorkF) cut off by
the long-wavelength envelope exp@22K(r)# of the size of
order j. In the original gauge@with variablesa(f,t)], this
basis was chosen by simply translating the basis~7! together
with the vortex. In the new gauge@with variablesã(f,t)],
only the long-wavelength envelope is translated, witho
shifting the phases of the quasiclassical plane waves.

This difference in matching phases of plane waves at
ferent vortex positions produces two different descriptions
the moving vortex. In the first gauge@variablesa(f,t)], the
evolution equation~11! contains impurities moving with re
spect to the vortex~fast oscillations inLff8). This descrip-
tion is similar to the approach taken in Refs. 10–12, a st
vortex subject to moving impurities. However, in those re
erences, theT term was omitted. We will show below tha
omitting this term does not change the result for the dissi
tion in the moderately clean limit, thus justifying the a
proach of Refs. 10–12. In the second gauge@variables
ã(f,t)], there are no oscillating terms inLff8 @except for
the slowly varying envelopeK(r ) whose time derivative
may be neglected in most cases#. All the oscillations in theL
term in the first gauge may be removed by a single ga
transformation, as all impurities move with respect to t
vortex with the same velocity and in the same direction. T
fact has not been properly taken into account in Ref.
which has led to an unphysical result. We shall commen
more detail on the derivation of Ref. 12 in Sec. V; here
just remark that the parallel motion of the impurities wi
1-3
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respect to the vortex requires special care in the calculat
within the first gauge, but is automatically taken into acco
in the second gauge.

III. CIRCULAR-UNITARY ENSEMBLE
OF THE QUASIPARTICLE LEVELS

IN THE DISORDERED VORTEX

In this section, we review the derivation of the two-com
spectral statistics in the vortex from Refs. 11 and 12 and
up the notation for the calculations in the later sections.
the discussion of the spectral statistics in this section,
take the vortex at rest (v50). Then the Hamiltonian in the
equation of motion~11! contains only two terms, the kineti
term2 iv0]/]f and the scattering termLff8 ~for a vortex at
rest there is no difference betweenLff8 and L̃ff8).

At not very high impurity concentration@see Eq.~38! be-
low#, the scattering kernelLff8 may be approximated as
sum of two local terms@this approximation is due to th
rapidly oscillating exponent in Eq.~16!#,

Lff854p iv0(
i 51

N

@Ji ďf,f i
ďf8,f i1p2Ji* ďf,f i1pďf8,f i

#,

~20!

whereN is the number of impurities in the core, the para
etersf i specify the angular positions of the impurities, a
ďf1 ,f2

are d functions smeared over the width (f12f2)

;(kFj)21/2 and antiperiodically continued inf1 and f2

( ďf1 ,f212p5 ďf112p,f2
52 ďf1 ,f2

). Note that the regular-

ization ~20! as a product of two smearedd functions is im-
portant for evaluating the scattering matrix~24! below.11,12

The effective strength of thei th impurity is

Ji5
iA 2Vie

22K(r i )12ikFr i

v0kFr i
; iq i

j

r i
e22K(r i )12ikFr i, ~21!

where q i5mVi is the Born parameter of the impurity~an
additional imaginary unit compared to the notation in Ref.
is due to the antiperiodic boundary conditions employed!.

The matrix elements~20! couple only angles with differ-
ence close top. Introducing the two-component vector

c~f!5S a~f!

a~f1p!
D , fP@0;p#, ~22!

the scattering becomes local inf. The individual scattering
events in Eq.~11! then may be integrated separately a
formulated in terms of a boundary condition12

c~f i10!5Mic~f i20!, ~23!

where

Mi5
1

11uJi u2 S 12uJi u2 2Ji

22Ji* 12uJi u2D . ~24!

The scattering matrixMi is diagonal both in the limits of
Ji!1 and Ji@1. The diagonal form ofMi in the limit Ji
@1 is a consequence of the projection of the scattering p
01452
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lem onto the low-energy states in the vortex core~see Refs.
11 and 12 for a detailed derivation!. The maximal scattering
between the channels occurs atJi;1, which, according to
Eq. ~21!, corresponds to impurities located at a distancer i
;q ij from the core center.11

The boundary condition forc(f) going around the half
circle is

c~0!52 isyc~p!. ~25!

Thus the energy levels are determined by the eigenvalue
the matrix2 isyM , where

M5MN•••M2M1 , p.fN.•••.f1.0. ~26!

The full ‘‘scattering matrix’’2 isyM is a unitary matrix with
the eigenvalues exp(6ipE/v0), so that the energy levelsE
are solutions to the equation

cos~pE/v0!52
i

2
trsyM . ~27!

The evolution of the wave functionc(f) is schematically
shown in Fig. 1.

In the moderately clean limit with a sufficiently large~but
not too large! number of impurities in the core, the matrixM
~and thus also2 isyM ) is random with a uniform distribu-
tion over the SU~2! group. Such a random-matrix ensemb
is classified as the ‘‘circular-unitary’’ ensemble with dime
sion 2.20 The density of states and the level correlations m
be easily computed from Eq.~27!. For example, the averag
density of states is given by12

^r~E!&5
2

v0
sin2S p

E

v0
D . ~28!

The spectrum consists of two combs of equidistant levels
level is characterized by the comb numbers561 and its
position in the comb,E6,k56(E012v0k), whereE0 is the
eigenvalue of the lowest level with positive energy (0<E0
,v0). The eigenfunctions can be written explicitly as

FIG. 1. Schematic representation of the evolution of the wa
function c(f) in the circular-unitary-ensemble regime. The tw
component wave functionc(f) rotates with the angular velocity
v0 and scatters off impurities. The impurity scattering is local a
is described by the unitary matricesMi , according to Eq.~23!.
After rotating by half a turn, the wave function is projected back
the origin with the help of the boundary condition~25!.
1-4
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c6,k~f!5eifE6,k /v0Mf,0c6~f50!, ~29!

wherec6(f50) are the two eigenvectors of2 isyM , and
the scattering matricesMf,f8 are defined as

Mf,f85Mi n
•••Mi 1

, f.f i n
.•••.f i 1

.f8, ~30!

where the product is taken over all impurities between
anglesf8 and f. Equation ~30! introducesMf,f8 for f
.f8; furthermore, it is convenient to define the scatteri
matrix for f,f8 as Mf,f85Mf8,f

† . The symmetry of the
SU~2! matrices

Mf,f8
* 5syMf,f8sy ~31!

allows us to translate easily between the eigenfunctions
the two series of levels via

c2,2k~f!5syc1,k* ~f!. ~32!

In our calculations, we shall need not only the propert
of the spectrum, but also some statistical properties of
wave functions in the regime of the circular-unitary e
semble. At any given pointf and for any energy level, the
wave functionc(f) is a spinor pointing in a random direc
tion. All directions are equally probable, allowing us to com
pute equal-point correlation functions such as

^c†~f!sac~f!c†~f!sbc~f!&5
dab

3
, ~33a!

^c†~f!sac* ~f!cT~f!sbc~f!&5
2dab

3
. ~33b!

The correlations between wave functions at different v
ues off may be expressed in terms of the properties of
scattering matrices~30!. The angular correlations betwee
scattering matrices decay exponentially,

^Mf,f8
† szMf,f8&5e2uf2f8u/ftsz , ~34!

where

1

v0t
[

1

ft
516nimpE

0

`

r dr
uJ~r !u2

@11uJ~r !u2#2
, ~35!

andnimp is the impurity concentration. In Eq.~35!, we have
assumed~for simplicity! that all impurities have equal Bor
parameters, in which case the effective impurity strengthJi
as given by Eq.~21! becomes a function ofr i and is denoted
J(r ) in Eq. ~35!. In order to derive Eqs.~34! and ~35! one
takes a small increment of^Mf,f8

† szMf,f8& in f and aver-
ages over a single impurity scattering matrix,

]

]f
^Mf,f8

† szMf,f8&

52nimpE
0

`

r idr i@^Mf,f8
† Mi

†szM iMf,f8&

2^Mf,f8
† szMf,f8&#. ~36!
01452
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The last averaging is performed independently overMf,f8
andMi . In averaging, we first account for the rapidly osc
lating off-diagonal elements in Eq.~24! and arrive at Eqs.
~34! and ~35!.

The scattering rate~35! is linear in the impurity concen-
tration reflecting the fact that impurities act independently
the regime of the circular-unitary ensemble. At the sa
time, the impurity strengthJi is taken into account nonper
turbatively @cf. Eq. ~24!#. The spatial integral~35! depends
on the impurity Born parameterq[mVi ~as above, we as
sume that all impurities are of equal potential strengthVi).
For strong impurities withq;1, the scattering timet is of
the order of the bulk normal-state elastic mean-free timetn .
For weak impurities withq!1, the integral in Eq.~35! has
a logarithmic dependence on the Born parameter,12

1

t
;

1

tn
ln

1

q
. ~37!

A similar logarithmic behavior of the scattering rate was a
derived in Refs. 6 and 7. The relaxation angleft in Eq. ~35!
plays a central role in the context of vortex dissipation, a
enters the expression for the friction coefficient and he
also for the flux-flow conductivity. In Ref. 12, this quantit
entered thenumeratorin the expression for the conductivity
while in our results it enters thedenominatorin the Bardeen-
Stephen form~1!. We comment in detail on our disagreeme
with Ref. 12 in Sec. V and in the Appendix.

The physical meaning offt is the correlation length of
the scattering matrixMf,f8 andt is the corresponding scat
tering time. We shall see later that it is the correlation fun
tion ~34! that determines the rate of interlevel transitions.
principle, one can derive a similar exponential decay ‘‘in t
x and y directions’’ @with sz replaced bysx or sy in Eq.
~34!#, in which case the correlation lengthft

(xy) is twice
larger thanft ‘‘in the z direction.’’ This is due to the specific
form ~24! of the scattering matrixMi .

In order to realize the regime of the circular-unita
random-matrix ensemble, it is necessary thatft!p, which
defines the lower bound for the moderately clean regim
v0t!1. However, the region of the circular-unitary e
semble does not extend over the whole moderately cl
regime.12 The additional restriction originates from th
breaking of the instant-scattering approximation~20! in the
limit of too strong disorder. Indeed, the typical width of th
smearedď functions in this equation can be estimated
df;1/AkFj ~that corresponds to an impurity at the distan
of the order ofj from the vortex center!. On the other hand
the number of impurities in the core isN;nimpj

2

;1/v0tnq2. The solution for the spectrum discussed abo
is justified as long as theď functions in Eq.~20! do not
overlap, which is equivalent to the conditionN df!1.
Thus, the circular-unitary ensemble is realized only in a re
tively narrow range of disorder strengths

v0

ln 1/q
!

1

tn
!q2ADv0 ~38!
1-5
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@we assume that the Born parameterq!1 and make use o
Eq. ~37!; for q;1 one should replace ln 1/q by 1#. For
stronger disorder~i.e., larger scattering rate 1/tn) or smaller
Born parameterq, the instant-scattering approximation~20!
fails and the circular-unitary ensemble crosses over to
classC ensemble.14,15 A phenomenological approach to th
crossover has been discussed in Ref. 22 and the resul
numerical simulations are available in Ref. 23.

IV. TWO REGIMES OF DISSIPATION

The time evolution of the core states is described by
~11!. Since the evolution operator is nonstationary~i.e., ex-
plicitly time dependent!, it causes transitions between leve
with different energy. In a fermionic system, the rate
downward transitions is suppressed compared to the rat
upward transitions due to the Pauli exclusion principle, le
ing to an increase of the average energy with time. The
ergy pumped into the system will finally be transferred to
thermal bath via the interaction with phonons or other s
degrees of freedom, thus producing a finite dissipation.

There are two different mechanisms of dissipation
pending on whether the individual energy levels can be
solved or not.18 If the discrete spectrum is smeared into
continuous one, the energy pumping can be calculated
the help of the standard linear-response Kubo formula.19 This
regime is naturally realized when theinelastic widthg in of
an energy level exceeds the mean level spacingv0. On the
other hand, the spectrum may turn out effectively continu
even atg in!v0 if the time dependence of the evolution o
erator on the right-hand side of Eq.~11! is so fast that it
destroys the instantaneous adiabatic spectrum.18 In this case,
the frequencygv of perturbations due to the nonadiabatic
of the spectrum exceedsv0 and plays the role of the effec
tive level width. In the opposite case, wheng in ,gv!v0, the
spectrum is essentially discrete and the dissipation is du
rare Landau-Zener transitions17 taking place when two levels
come very close to each other.

In a normal metal at low temperatures, the inelas
widths due to the electron-electron and electron-phonon
teractions are given byge-e;T2/EF and ge-ph;T3/QD

2 ,
respectively24 (QD is the Debye temperature!. Sincege-e is
of the order ofv0 already atT;D, it does not contribute to
the level smearing at lower temperatures. Furthermore,
the states localized in the vortex core the interaction w
phonons appears to be strongly suppressed compared t
normal-state rate;25 one of the main reasons is that the qu
siparticles with energymv0!D are composed of nearl
equal mixtures of electron and hole components@i.e., ^um

2 &
'^vm

2 &, cf. Eq. ~6!# with negligible net charge. Thus, at su
ficiently small temperaturesT!D, the inelastic width of the
core statesg in!v0 and the regime of dissipation is dete
mined solely by the vortex velocity. In Ref. 10, the crossov
velocity vK separating the regimes with discrete and conti
ous spectra was estimated as

vK;
D/pF

AkFl
~39!
01452
e

of

.

f
of
-

n-
e
ft

-
-

th

s

to

c
-

or
h
the
-

r
-

and we will present a microscopic derivation of this res
below.

For model Hamiltonians from the three Wigner-Dyso
random-matrix ensembles,20 dissipation was calculated b
Wilkinson18,26 in the regimes of small (v!vK) and large
(v@vK) velocities~in the limit g in50). He finds that if the
HamiltonianH(X) of the system depends on time throug
X5vt, then the energy dissipation is determined by the va
ance of the level velocityC(0)[^(]Ei /]X)2&/v0

2 normal-
ized by the mean level spacingv0. In the continuous-
spectrum regime specified byv@vK[v0C21/2(0), the
energy dissipation rate as given by the Kubo formula,18,27

WKubo5
b

2
pC~0!v2, ~40!

describes viscous damping both for the orthogonal (b51),
unitary (b52), and symplectic (b54) ensembles. In the
discrete-spectrum regime, atv!vK , the result crucially de-
pends on the level-repulsion parameterb, which determines
the probabilityP(«)}«b to find two levels at a distance«
!v0. In this situation, the energy dissipation rate is given
the expression18

Wb}v (b12)/2, ~41!

hence the dissipation is super-Ohmic for the Gaussian
thogonal ensemble, while for the Gaussian unitary ensem
it remains Ohmic withW25pC(0)v2, exactly coinciding
with WKubo despite a very different mechanism of dissip
tion.

In the following sections, we calculate the dissipation ra
for the vortex motion in the regime of the Koulakov-Lark
two-comb spectrum,12 both in the limits of small and large
velocities, thus extending Wilkinson’s considerations to t
case of circular-unitary ensembles.

V. DISSIPATION IN THE DISCRETE SPECTRUM
„LANDAU-ZENER REGIME …

In this section, we calculate the dissipation for the tw
comb level structure described in Sec. III at small velociti
We will work in the ‘‘tilded’’ basis ã(f,t) introduced in Eq.
~17!, where the energy coincides with the expectation va
of the evolution operator~11!, with Tff8 and Lff8 substi-
tuted by their tilded counterparts~18! and ~19!. In the low-
velocity limit, the energy is pumped into the system wh
two levels come very close to each other and a nonadiab
Landau-Zener~LZ! transition becomes possible. Due to th
symmetry of the two-comb spectrum, the rateRLZ of such
transitions is the same for each neighboring pair of leve
We will calculateRLZ by considering the lowest level with
positive energy« and its mirror image with energy2«. For
simplicity, we assume that the vortex moves in thex direc-
tion, vy50.

Following the logic of Ref. 18, we diagonalize the Ham
tonian att50 and restrict it to the 232 matrix involving the
pair of states considered,
1-6
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VORTEX VISCOSITY IN THE MODERATELY CLEAN . . . PHYSICAL REVIEW B67, 014521 ~2003!
H̃~ t !5S «1h11t h12t

h12* t 2«2h11t
D , ~42!

wherehi j are the elements of the matrix]H/]t @neglecting
the quadratic term}(]2H/]t2)t2 is justified in the Landau-
Zener regime, since the duration of a nonadiabatic transi
is proportional to the gap of the avoided crossing and
small atv!vK]. The instantaneous adiabatic spectrum ta
the form

E~ t !56ADLZ
2 1A2~ t2tLZ!2, ~43!

where

DLZ
2 5

«2uh12u2

A2
, A25h11

2 1uh12u2, tLZ52
«h11

A2
.

~44!

Equation ~43! describes an avoided crossing with t
minimal distance~Landau-Zener gap! 2DLZ between the
spectral branches realized att5tLZ . The probability of
the Landau-Zener transition at such a crossing
exp(2pDLZ

2 /A). The mean rate of transitions is given by

RLZ5K d~ tLZ!expS 2p
DLZ

2

A D L , ~45!

where the role ofd(tLZ) is to count each avoided crossin
once. The average in Eq.~45! is taken over the distribution
of the parameters«, h11, and h12 describing the avoided
crossing. The energy« is expressed through the transfer m
trix M according to Eq.~27!. The coefficientsh11 andh12 are
the matrix elements of the perturbation~18! over the exact
wave functionsc6(f)[c6,0(f) @which depend on the tra
jectory Mf,0 via Eq. ~29!#,

h115v0kFvE
0

pdf

p
c1

† ~f!szc1~f!cosf, ~46!

h125v0kFvE
0

pdf

p
c1

† ~f!szc2~f!cosf. ~47!

We come to the crucial point: The quantities«, h11, and
h12 have different dependencies on the transfer matrixMf,0 .
In the moderately clean limit, when the number of impuriti
in the core is sufficiently large andft!1, the matrixMf,0
performs many rotations over the SU~2! group. Therefore,
we conclude that~i! «, h11, andh12 are uncorrelated, and~ii !
the distribution ofh11 andh12 is Gaussian. We further calcu
late the variances ofh11 andh12. For ^h11

2 & we obtain with
the help of Eq.~34!,

^h11
2 &5~v0kFv !2E

0

pdf

p

df8

p
cosfcosf8e2uf2f8u/ft

3^c1
† ~f!szc1~f!•c1

† ~f!szc1~f!&. ~48!

Integrating overf2f8 and averaging over the spinorc(f)
according to Eq.~33a! we find
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^h11
2 &

~v0kFv !2
5

ft

p
^~c1

† szc1!2&5
ft

3p
. ~49!

Analogously, with the help of Eq.~33b! we obtain

^uh12u2&

~v0kFv !2
5

ft

p
^uc1

† sxc1* u2&5
2ft

3p
. ~50!

In the same way it can be shown that^h11h12&50, thus
proving the statistical independence ofh11 andh12. We con-
clude thath11, Reh12, and Imh12 are independently distrib
uted with the same distribution

P~h!5A 3

2ft

1

v0kFv
expS 2

3ph2

2ft~v0kFv !2D . ~51!

The distribution function for« is provided by the density o
states~28!, in the limit «!v0 , P(«)52p2«2/v0

3.
Averaging Eq.~45! over «, h11, andh12 with the distri-

butions P(«) and P(h), we obtain for the mean rate o
Landau-Zener transitions

RLZ5
kF

2v2ft

2v0
. ~52!

The energy dissipation rate is given byW5v0RLZ[hv2

with the vortex viscosity

h5
1

2
kF

2ft5
1

2
kF

2v0t. ~53!

As defined by Eq.~53!, h is a two-dimensional viscosity. In
a layered superconductor, it determines the friction forceF
52hv exerted on the vortex from excitation of quasipar
cles within one layer.

The statistics~51! of the matrix elements of]H/]t deter-
mines the sensitivity of the spectrum to the vortex moti
and allows one to find the critical velocityvK separating the
regimes of discrete and continuum spectra. The disc
spectrum can be resolved if the change of the Hamilton
during the timev0

21, dH;h/v0, is smaller thanv0. Taking
for h the dispersion of the distribution~51!, we find for the
critical vortex velocity

vK;
v0

kFAft

, ~54!

coinciding with the estimate~39! found in Ref. 10.
Comparing with Ref. 12, we find that our result~53! for

the viscosity is smaller by a factorft
2 and the expression

~54! for vK is larger by the factor 1/ft . In Ref. 12, following
the analysis in Refs. 10 and 11, it was assumed that
dissipation is produced by impurities moving with respect
the vortex, equivalent to neglecting the Doppler-shift te
Tff8 in Eq. ~11!. In order to identify the origin of the dis-
crepancy in the results and verify the validity of omitting th
Doppler shift, we reconsider below the treatment of R
12—we will see that the source of the disagreement is no
the neglect of the Doppler-shift term but in the neglect
1-7
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cross correlations between the motion of different impuriti
To demonstrate this, we adopt the approach of Ref. 12~omit-
ting the Doppler-shift term! and recalculate the correlator o
the spatial gradients of the matrixM,28

C5
1

4 K S tr
]M

]x D 2L , ~55!

from which the viscosity follows viah52 C/p. Comparison
between Eqs.~55! and ~40! shows that the quantity (2/p2)C
plays the role of the correlation functionC(0).

The matrixM specified in Eq.~26! is a product of transfer
matrices of individual impurities. Therefore, there are tw
contributions to the correlator~55!, one originating from de-
rivatives over the coordinates of the same impurity~diagonal
part! and a second one from derivatives taken on differ
impurities ~off-diagonal part!,

Cdiag5
1

4 (
i

K tr
]M

]xi
tr

]M

]xi
L , ~56!

Coff-diag5
1

4 (
iÞ j

K tr
]M

]xi
tr

]M

]xj
L . ~57!

The diagonal part is given by12

Cdiag5
pkF

2

4ft
. ~58!

The cross term, expressing the correlated nature of the
tion of the impurities with respect to the vortex, has be
missed in Ref. 12. Its calculation is presented in the App
dix and the result takes the form

Coff-diag52
pkF

2

4ft~11ft
2!

. ~59!

We thus see that the two contributionsCdiag and Coff-diag
nearly cancel each other and the net sensitivity of the sp
trum to the vortex motion appears to be significantly low
than that found in Ref. 12,

C5
pkF

2ft

4
, ~60!

where we employed the conditionft!1 of the moderately
clean limit. Using Eq.~55!, one recovers the result~53! for
the vortex viscosity. The above consideration not only c
rects the result of Ref. 12; in addition, it serves as a mic
scopic justification of the model adopted in Refs. 10–
where the dissipation is due to impurities moving through
core and the Doppler-shift termT in Eq. ~11! is neglected.

VI. DISSIPATION IN THE CONTINUUM SPECTRUM
„KUBO FORMULA …

If the vortex velocityv exceedsvK the discrete spectrum
is smeared and transitions between non-nearest levels
01452
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come possible. In this limit, the energy dissipation can
calculated with the help of the Kubo formula; as in Sec.
we will use the tilded basis~17!. Neglecting the slow time
dependence ofL̃ff8 , we write the evolution operator a
H̃(t)5H01It , whereH0 is the Hamiltonian of the vortex a
rest andI 5T̃/t takes the form

I ff852pd~f2f8!I ~f!, I ~f!5v0kFvcosf,
~61!

where we again assumed thatvy50. The energy dissipation
rate

W[
dE

dt
5^tu

]

]t
H̃~ t !ut& ~62!

is calculated as the linear response to the termIt with the
help of the Kubo formula

W5 i E
2`

0

t8dt8^0u@I~ t8!,I~0!#u0&, ~63!

where

I~ t !5E
0

2p

I ~f!Ĉ†~f,t !Ĉ~f,t !
df

2p
~64!

andĈ(f,t) is a second-quantized operator in the interact
representation. The latter can be rewritten in terms of
~exact disorder dependent! eigenfunctionsãn(f) and eigen-
valuesEn of the HamiltonianH0,

Ĉ~f,t !5(
n

ĉnãn~f!e2 iEnt, ~65!

with ĉn the corresponding annihilation operators. Averagi
over the initial state of the vortex at rest@so that ãn(f)
coincides withan(f)], one arrives at the expression

W5 i E
2`

0

t8dt8E dfdf8

~2p!2
I ~f!I ~f8!

3(
km

~nk2nm!ak~f!ak* ~f8!am~f8!am* ~f!

3ei (Ek2Em)(t82t), ~66!

wherenk5^ĉk
†ĉk& is the distribution function at the energ

Ek . This expression can readily be represented~cf., e.g., Ref.
29! in terms of the Green functions

GE
R,A~f,f8!5(

n

an~f!an* ~f8!

E2En6 id
, ~67!
1-8
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VORTEX VISCOSITY IN THE MODERATELY CLEAN . . . PHYSICAL REVIEW B67, 014521 ~2003!
W5
1

2E dfdf8

~2p!2 E dE

2p

]n~E!

]E
I ~f!I ~f8!@GE

R~ff8!

2GE
A~ff8!#@GE

R~f8f!2GE
A~f8f!#. ~68!

The above formula for the dissipation rate is not restricted
the regime of the circular-unitary ensemble, but is valid
the whole moderately clean limit regime as long asv@vK .
In particular, one can easily recover the result of the stand
quasiclassical analysis by assuming thet approximation:
within this approach the Green function is diagonal in t
momentum representation,

^GE
R,A~m!&5

1

E2v0m6
i

2t

, ~69!

and evaluating the integral in Eq.~68! one finds the energy
dissipation rateW5htv

2 with the vortex viscosity coeffi-
cient

ht5
1

2
kF

2v0t. ~70!

Thet approximation is the simplest approach to the pro
lem where all spectral correlations are neglected. Below,
will calculate the vortex viscosity for the case of th
Koulakov-Larkin two-comb statistics and check how t
presence of the two-comb correlations in the energy lev
modifies the result~70!. To this end we rewrite Eq.~68! in
terms of the wave functionscsk(f) introduced in Eq.~29!,

W52
1

2 (
s,s8,k,k8

E dfdf8

p2 E dE

2p

]n~E!

]E

3E dtdt8eiFI ~f!I ~f8!

3^cs8k8
†

~f!szcsk~f!•csk
† ~f8!szcs8k8~f8!&,~71!

where F5E(t2t8)2Eskt1Es8k8t8. We first reexpress the
wave functionscsk(f) via Eq.~29! and perform the summa
tion overk andk8 according to the summation formula

(
k

eiEskt5
p

v0
eiEs,0t (

m52`

`

d~ t2mp/v0! ~72!

~which produces a double infinite sum ofd functions oft and
t8). We cut off the integrals overt andt8 at some time scale
smaller thanp/v0—such a cutoff is equivalent to assumin
a smearing of the energy levels with widths larger thanv0.
Under this assumption, only one term of the double infin
sum survives witht5t85(f2f8)/v0. Next, the integra-
tions overt, t8, andE can be trivially performed. Finally, we
sum overs ands8 and arrive at
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^cs8
†

~0! Mf,0
† szMf,0 cs~0!cs

†~0!Mf8,0
† szMf8,0 cs8~0!&

5tr^Mf8,f
† szMf8,fsz&. ~73!

This average is calculated with the help of Eq.~34! yielding

h5
kF

2

4pE0

p

dfdf8cosf cosf8tr^Mf8,f
† szMf8,fsz&

5
1

2
kF

2v0t. ~74!

The form of the above result coincides with Eq.~70! calcu-
lated within thet approximation. The microscopic expre
sion for the elastic relaxation timet is given by Eq.~35!. In
case the inelastic relaxation time is shorter thant, it substi-
tutes the latter in Eq.~74!.

To conclude this section we mention that the same re
~74! can be obtained in the model where the Doppler-s
termTff8 in Eq. ~11! is neglected and the dissipation is du
to the motion of impurities with respect to the vortex. With
that model the energy dissipation rate is calculated as a lin
response to a change in the impurity positions. The der
tion formally repeats the one presented above but with
operatorI ff85v ]Lff8 /]x. Performing the same manipula
tions leading to Eqs.~71! and ~74! we obtain

h5
1

4p K tr
]M†

]x

]M

]x L , ~75!

whereM is the product of scattering matrices defined in E
~26!. The above correlation function for the random SU~2!
matrix M can be related to the correlation function~55! and
is equal to 8C. Therefore, Eq.~75! exactly coincides with its
low-velocity analog~55! and reproduces the result~74!.

VII. DISCUSSION

The main conclusion of this paper is that the Barde
Stephen expression for the flux-flow conductivity is e
tremely insensitive to the details of the level correlations
the vortex core. We calculated the energy dissipation rate
the case of the Koulakov-Larkin two-comb level structu
when the spectral correlations are most pronounced. Su
statistics, classified as the circular-unitary ensemble of
mension 2, is obtained for layered superconductors wit
the region of the moderately clean limit specified by E
~38!. We found that the vortex viscosity is the same for t
regimes of discrete (v,vK) and continuum (v.vK) spectra
and coincides with the result~70! of the phenomenologicalt
approximation. The viscosityh determines the flux-flow dis-
sipative conductivity via the standard relationsxx
5ech/pB. Assuming a cylindrical Fermi surface, we arriv
at the result~1! obtained previously via several quasiclassic
approaches.2–7

Despite that we found the same result forsxx in the limits
of small and large vortex velocities, it is worth emphasizi
that the physics of energy dissipation is quite different in
1-9
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M. A. SKVORTSOV, D. A. IVANOV, AND G. BLATTER PHYSICAL REVIEW B67, 014521 ~2003!
two limits. In the Kubo regime (v.vK) the energy is
pumped continuously, whereas in the Landau-Zener reg
(v,vK) it is absorbed in discrete portions of sizev0. The
equivalence between thet approximation and the result o
the exact microscopic treatment is not very surprising in
Kubo regime, as in this limit it is determined by the n
sensitivity of the spectrum to the vortex displacement rat
than by interlevel correlations. On the other hand, in
Landau-Zener regime, this equivalence is a matter of coi
dence: it relies on the fact that the vortex Hamiltonian b
longs to the circular-unitary universality class characteriz
by a level-repulsion parameterb52.

The other outcome of the present work is that it provid
a justification for neglecting the Doppler-shiftT term, Eq.
~12!, that was implicitly assumed in earlier papers.10–12

Without theT term, the system is equivalent to a vortex
rest with impurities moving through its core. The dissipati
is then related to the change of the level positions due to
motion of the impurities. On the other hand, theT term de-
scribes the electric field in the core, which is the source
energy dissipation in the Bardeen-Stephen model—omit
this term is a bit confusing. Nevertheless, our analysis in
cates that the vortex viscosities calculatedwith and without
this term coincide in the moderately clean limit. One m
expect, however, that a correct treatment of this term is c
cial in the calculation of the Hall conductivity and in th
superclean limit.

In this paper, we considered a strictly two-dimension
superconductor~or layered superconductor with negligib
interlayer coupling!. In the case of the Koulakov-Larkin
circular-unitary-ensemble statistics, the effect of interla
hopping is small provided that the effective quasiparti
temperature in the core,Tcore, is smaller thanv0(mc /mab),
wheremc /mab is the effective mass anisotropy. This cond
tion ensures that the interlayer hopping amplitude is alw
smaller thanv0 and can be neglected. This behavior is to
contrasted with the one for the classC random-matrix statis-
tics realized in the moderately clean case for weak impuri
(q!1) and in the dirty (Dt!1) limit. In that case, the
interlayer coupling leads to tunneling from thenth level in
one layer to themth level ~with mÞn) in the adjacent layer
thereby opening an interlayer channel for energy dissipat
The competition between the intralayer and interlayer ch
nels may lead to a strong deviation from the Barde
Stephen formula~1! and even to hysteretic behavior of th
current-voltage curve.30 On the contrary, the two-comb spe
trum is absolutely rigid: thenth level in one layer can hav
an avoided crossing only with thenth level in the adjacen
layer and the tunneling between these two levels does
result in dissipation.

ACKNOWLEDGMENTS

We thank M. V. Feigelman and A. I. Larkin for man
useful discussions. This research was supported by
SCOPES program of Switzerland, the Dutch Organizat
for Fundamental Research~NWO!, the Russian Foundatio
for Basic Research under Grants Nos. 01-02-17759 and
02-06238, the program ‘‘Quantum Macrophysics’’ of th
01452
e

e

r
e
i-
-
d

s

t

e

f
g
i-

-

l

r

s
e

s

n.
-
-

ot

he
n

2-

Russian Academy of Sciences, the Russian Ministry of S
ence, the Russian Science Support Foundation~M.A.S.!, and
the Swiss National Foundation. M.A.S. thanks ETH Zu¨rich
for hospitality.

APPENDIX

Here, we calculate the off-diagonal correlation functi
Coff-diag defined in Eq.~57!. To this end we divide the angle
interval@0,p# into many small pieces@f (k21),f (k)# of width
df→0 so that each piece contains one impurity at ma
mum. The transfer matrix of thekth interval is hence eithe
Mf(k),f(k21)51 ~no impurities! or Mf(k),f(k21)5Mi ~if the
angle of thei th impurity f iP@f (k21),f (k)#). Then

Coff-diag5
1

4 (
kÞp

K tr Mp,f(k)
]Mf(k),f(k21)

]x

3Mf(k21),0tr Mp,f(p)
]Mf(p),f(p21)

]x
Mf(p21),0L

5
1

4 (
kÞp

^tr RY~k!tr RMf(p21),f(k)
† Ỹ~p!Mf(p21),f(k)&,

~A1!

whereR5Mf(k),0Mp,f(k) and

Y~k!5
]Mf(k),f(k21)

]x
Mf(k),f(k21)

† ,

Ỹ~p!5Mf(p),f(p21)
† ]Mf(p),f(p21)

]x
. ~A2!

The representation~A1! is suitable for averaging over disor
der, since one can independently average the matricesR, Y,
Ỹ, and Mf(p21),f(k). The statistical independence ofY(k),
Ỹ(p), andMf(p21),f(k) follows from the fact that the inter-
vals @f (k21),f (k)#, @f (k),f (p21)#, and@f (p21),f (p)# do not
overlap. As we will see below, the correlator~A1! is essen-
tially nonzero atuf (k)2f (p)u;ft . The matrix R, which
couplesf (k) andf (k) through the pointf5p, is the product
of a large number of matricesMi and loses all correlations
within the interval@f (p21),f (p)#.

In calculating^Y(k)& and ^Ỹ(p)& with the help of Eqs.
~24! and ~21! only the fast phase ofJi should be differenti-
ated,

^Y~k!&52^Ỹ~k!&

5 isz2kFcosf (k)dfE
0

`

2nr dr
4uJ~r !u2

@11uJ~r !u2#2

5 iszkF

df

ft
cosf (k), ~A3!
1-10
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with the last relation following from the definition~35! of the
angle coherence lengthft!1. Taking the continuum limit
df→0, we obtain

Coff-diag5
kF

2

4ft
2E0

p

df1df2cosf1cosf2

3^tr Rsztr RMf2 ,f1

† szMf2 ,f1
&. ~A4!

Averaging overMf ,f according to Eq.~34! and integrating

1 2

n

h.

01452
over (f11f2)/2 we find

Coff-diag5
pkF

2

4ft
2 ^tr Rsztr Rsz&E

0

`

df e2f/ftcosf,

~A5!

where the upper limit is substituted by infinity due to the fa
convergence of the integral. Finally, averaging overR uni-
formly distributed over the SU~2! group and evaluating the
remaining integral, we arrive at Eq.~59!.
uer,

tion

les,
.

e

,

1A.I. Larkin and Yu. N. Ovchinnikov, inNonequilibrium Super-
conductivity, edited by D.N. Langenberg and A.I. Larki
~Elsevier Science, New York, 1986!, p. 493.

2L.P. Gor’kov and N.B. Kopnin, Zh. E´ksp. Teor. Fiz.65, 396
~1973! @Sov. Phys. JETP38, 195 ~1973!#.

3J. Bardeen and R.D. Sherman, Phys. Rev. B12, 2634~1975!.
4A.I. Larkin and Yu.N. Ovchinnikov, Pis’ma Zh. E´ksp. Teor. Fiz.

23, 210 ~1976! @JETP Lett.23, 187 ~1976!#.
5N.B. Kopnin and V.E. Kravtsov, Pis’ma Zh. E´ksp. Teor. Fiz.23,

631 ~1976! @JETP Lett.23, 578 ~1976!#.
6N.B. Kopnin, Pis’ma Zh. E´ksp. Teor. Fiz.60, 123 ~1994! @JETP

Lett. 60, 130 ~1994!#.
7N.B. Kopnin and A.V. Lopatin, Phys. Rev. B51, 15 291~1995!.
8J. Bardeen and M.J. Stephen, Phys. Rev.140, A1197 ~1965!.
9C. Caroli, P.G. de Gennes, and J. Matricon, Phys. Lett.9, 307

~1964!.
10M.V. Feigel’man and M.A. Skvortsov, Phys. Rev. Lett.78, 2640

~1997!.
11A.I. Larkin and Yu.N. Ovchinnikov, Phys. Rev. B57, 5457

~1998!.
12A.A. Koulakov and A.I. Larkin, Phys. Rev. B60, 14 597~1999!.
13F. Guinea and Yu. Pogorelov, Phys. Rev. Lett.74, 462 ~1995!.
14M.A. Skvortsov, V.E. Kravtsov, and M.V. Feigel’man, Pis’ma Z
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