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Weak charge quantization on a superconducting island
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We consider Coulomb blockade on a superconductive quantum dot strongly coupled to a lead through a
tunneling barrier and/or normal diffusive metal. Andreev transport of the correlated pairs leads to quantum
fluctuations of the charge on the dot. These fluctuations result in exponential renormalization of the effective
charging energy. We employ two complimentary ways to approach the problem: the instanton and the func-
tional renormalization group treatment of the nonlineamodel. We show that these two different methods
produce identical results. We also derive the charging energy renormalization in terms of the arbitrary trans-
mission matrix of the multichannel interface.
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[. INTRODUCTION with many (superconductivedots incorporated in the con-
ducting matrix.

Physics of interacting electronic systems in the presence For the normal dot the weak CB effect was relatively well
of disorder has been a subject of an intense study already fétnderstood from various points of view. Matvéeayave a
a few decadeb.Various theoretical approaches have beerfomplete picture of the phenomena for the case of one or two
developed for the description of both metallic and insulatorconducting channels connecting the dot and the leads. For
phases. The nonlinear model (NLoM) in the replic& or th'e muIUchanneI system the CB suppression was c_:alculated
dynamié*® (Keldysh formulation has proven to be the most With exponential aceuracy employing a RG technide,
povert o todewih e weaky dirderetally * SBTn L e e e
phase. It was shiown that both versions of thenodel may E NazgrO\]/4 in termsyof transmission coefficients,,, of
effectively treat the perturbation theory as well as the renor®Y ) T w:
malization group(RG) formalism. Unlike the noninteracting the dot-lead interface a8, (1—T,)™", wherea=1,... N
models, where a whole spectrum of nonperturbative results @nd N is the number ofspinlesschannels. The remarkable
available® there was relatively little progress in the develop- féature of this result is that the essentially many-body phe-
ment of nonperturbative solutions of the interactinggill. ~ "omena may be described via the single-partidleninter-
Our goal is to take a step in this direction, using the CoulomfCcting scattering matrix only. Yet the knowledge of the in-
blockade(CB) on a superconductivéSC) quantum dot as a terfaqe conductancé}zZaTQ alone is not_ sufficient to
prototypical example. describe the CB oscnlatlons_. For ex_ample, in a dot coupled

The Coulomb blockade on a quantum dot coupled to 4° @ lead through the tunneling barrier with <1, one ob-
certain number of leads proved to be an extremely rich andins for the CB suppression factor ¢xiy/2}. Another
fascinating phenomena both theoretically and experimentalljiPortant case of a dot-lead interface is a coupling via a
(see Refs. 7 and 8 for reviewFrom a theoretical point of Pi€ce of.dlﬁésze metal. Employlng the Dorokhov statistical
view it provides a model, where the Coulomb interactions distributiori® of the transmission  coefficientsP(T)
being spatially localized, may be treated in a nonperturbative= Go/(2TV1—T), whereGy, is the conductance of the dif-
way. The interactions strongly affect chargand spin fluc-  fusive area, one obtains for the typical CB suppression factor
tuations between the dot and the leads, which manifests i8XP{— 7 Gp/8}. Since the result is exponentially sensitive
the particuliar transport and thermodynamic behavior of théhe difference between, e.€/2 andw°G/8 may be actually
coupled dot-lead system. In the case of the practically iso€n0rmous.
lated dot, such that the dimensionless conductgmncea- The superconductive dot in contact with normal leads is
sured in units oGQEeZ/(zwﬁ)] of the dot-lead interface is €ven more challenging system. We consider the low tempera-
small (G<1), the fluctuations usually may be taken into turesT<A, whereA is the SC gap, and therefore only very
account perturbativelyThe notable exceptions are provided few (if at all) quasiparticle excitations are allowed to leave or
by the vicinity of the charge degeneracy point and by theenter the superconductor. The dominant mechanism of the
Kondo effect on the ddt Here we concentrate on the oppo- charge transfer through the interface is thus the Andreev
site scenario of the dot Strong|y connected to the leddls ( transport of the correlated pairs. The Andreev transmission
>1). In this case the Coulomb blockade is expected to b®f a given channel is knowfr*®to be7,=T3/(2—T,)?. For
suppressed by the charge fluctuations and the overall effetitie tunneling barrier setupl(<1) this leads to an overall
of interactions on a single dot is expected to be weak. It isAndreev conductance that scales@g~ G%/N (pair tunnel-
however, a challenging theoretical problem, lacking an obviing probability). In most cases this is a very small number.
ous small parameter, to understand the remnants of the CBhe presence of the diffusive normal metal adjacent to the
on a strongly connected dot. More importantly the weak CBtunneling barrier increases the Andreev conductancé 4o
may prove to be a strong phenomenon in granulated systems,G3/Gp, (or, in the cas&>Gp, 1o Gy~ Gp). The physi-
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cal reason for this phenomenon is multiple attempts of the (2)

Andreev transmission due to the coherent backscattering on _| SC metal lead
the normal impurities. The natural question is whether @&is dot

or G, (or may be none of thejithat determines the ampli- E, G, G,

tude of the CB oscillations. In casg, is the relevant quan-

tity, one may wonder whether the coherent backscattering
enhancement should be taken into account. The answers are
not immediately obvious, since while the SC strongly prefers
the pair transport, the Coulomb energy of the dot makes the
entrance of two charges at once energetically costly. The
interactions of the dot may also provide a dephasing mecha-
nism that ruins coherent back-scattering.

In this paper we derive the thermodynamic characteristics
of the strongly connected superconducting quantum dot. The
major characteristic that determines the amplitude and the FIG. 1.(a) Schematic view of a SC dot connected to a bulk lead
temperature dependence of the weak Coulomb blockade fgrough a tunnel barrier with the conductar®e and a piece of

the renormalized charging enerE)t. For the superconduct- diffusive metal with conductanc&y . The charging energc

. . . . controls the coupling between the dot and the A possible
ing dot with the bare charging ener@ it turns out to be 5 \oaization ping gdiA

2
NEc:Ec& T a-7)v2 (1)  (infinite) set of coefficients, whose values are subsequently
272 renormalized by the quantum fluctuations of the phase on the
whereG,=43 T, is the Andreev conductance of the dot— dot. Renormalization is terminated at the cutoff energy scale

lead interface. This expression provides a remarkable anaYyhere Fhe conductance reache_s unity. The_ renorma_{wed
ogy between the normal and superconducting setups. It al%onegtlally sma)l cutoff energy is the efiective charging en-
shows that qualitatively it is indee@, (including diffusive €9y Ec. which dictates the amplitude of the CB oscilla-
enhancemeitthat determines the CB amplitude. Quantita-ions. One of the conclusions of the present paper is that
tively, however, the renormalized charging energy cannot b&hese two approaches lead to the identical results. _
expressed in terms dB, only and requires more detailed  The paper is organized as follows: in Sec. Il we describe
knowledge of the interface structure. We give a detailedne setup and formulatg the appropriate action in interacting
quantitative result for an interface made of the tunneling barNLoM language. Section Ill is devoted to the instanton
rier attached to the diffusive metal. treatment of the problem in the real space. In Sec. IV we

The other interesting phenomena caused by supercondugérive the proximity action functional and obtain the CB
tivity is the parity effect:®?°At very small temperatures pair am_plltude fpr an arbitrary set of transmission eigenvalues
tunneling is the dominant mechanism and the pefindhe ~ (Using the instanton approgcht moderately low tempera-
gate voltagge of the CB oscillations is twice larger than that turesEc<T<Ec. Then in Sec. V the RG approach is em-
in the normal dot. For a closed dot the parity phenomenon iployed to treat the CB in the same temperature range. It is
destroyed by the entropic effects at moderately small temedemonstrated that the results coincide with those obtained by
peraturesT* = A/In(A/8)<A, where § is the mean single- instanton techniques. Finally in Sec. VI we discuss the physi-
particle level spacing on the d#t.The physical reason for cal results and their possible experimental signatures. The
this temperature to be much less thiars that it is enough to  Appendix contains a derivation of the instanton action start-
have a single excited quasiparticle to destroy the parity efing from the real-time Keldysh functional technique.
fect. At larger temperatures the system exhibits the normal-
state_c_)scillation period. We show that for an open dot the Il. PROBLEM SETUP AND ACTION
transition temperature between the normal and doubled pe-
riod is somewhat larger than that for a closed dot and is We consider a large diffusivéor chaoti¢ SC dot. The
given by TT=A/In(A/G,d), providedG,8<A. For Eq<T! mean single-particle level spacing of the dét,is supposed
we predict a sharp transition &=T", characterized by the to be the smallest energy scale in the problem. The SC gap,
sudden change of the CB oscillation period, drop of the os&, ©n the other hand, is the largest scale. The electrons on
cillation amplitude, and onset of the strong temperature gethe dot interact via the capacitive interaction of the form
pendence. .

Technically we treat the problem from two seemingly dis- Hin=Ec(N—q)?, (2
tinct perspectives. First we look for the spatially dependent R
instanton solution of the interacting MIM on a SC dot in  whereN is the electron number operator ani the rescaled
contact with the normal diffusive region. The finite action of dimensionless gate voltage potential. The charging energy,
such an instanton configuration results in the exponentiadEc=e?/(2C), is assumed to satisfy the inequalitiés: Ec
suppression of the CB amplitude. Alternatively we can treat<A.
the problem employing the functional RG technique. The The dot is separated from the normal diffusive metal by a
latter approach encodes the entire dot-lead interface in atnneling barrier with conductanc&; (see Fig. 1 The
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piece of the quasi-one-dimensional or two-dimensional metal A. Action of the dot

having sizel. and conductanc®p is in turn connected to & According to our model the dot is the only region where
clean bulk three dimensiondBD) lead. For reasons eX- glectrons interact via the Coulomb interaction, E). As a
plained later we shall assume that the Thouless energy of th@sult, the dot's action contains the two coupled fields:
diffusive region,ETh=D/L2, whereD is the diffusion coef- (I)a(T) and ng( T, 7—’)_ The first one Originates from the
ficient, is larger than the charging energy of the d&t,  Hubbard-Stratonovich decoupling of the Coulomb téfm,
>Ec. The opposite limiting case requires a separate treawhile the latter is the result of disorder averaging and inte-
ment and will be presented elsewhere. gration of the fermionic degrees of freedom on the“dBath

We shall be interested in those thermodynamic charactenf these fields are spatially independent, reflecting the fact
istics of the dot, that depend in an oscillatory way on the gatehat the Thouless energy of the dot is assumed to be large.
voltage potentialg. Specifically, we look for the free energy The action takes the now standard form:
F(g)=—-TInZ(qg), where Z(q) is the partition function.
Both of these quantities depend on a particular realization of (9,9,)
disorder in the diffusive region and inside the dot. We shall 4E,
therefore look for a disorder-averaged quantity such as

F(q)). For an open ddt(q) is an oscillatory function, with ™ s 2
; phaée sensitive to a disorder realization. It is therefore con- 5Tr{(03a7 19,0+ 8)Qs}- @
venient sometimes to calculate also the correlation functioq_|
(F(9)F(q')).*®The latter carries information about the typi- such a way thag®=gq for ac[1p] while q=q’ for a
cal F(q), rather than the average otwhich may spuriously ' N
. e[p+1,20]. The SC order parameterA=(A, o,

vanish due to phase randomness AR 53 is th for all i di itt

Disorder averaging may be performed in two ways, either 3.0*_) 'S the same for all replicas and 15 Wr|_en asa
by introducingp replicas of the systefif and sendingp matrix in the Gorkov-Nambu space, where..=(oy

. . . *io,)/2. Notice that the gate voltage dependence of the
0 at the end, or by dealing with the dynamical Keldysh 2 . - . .
f:rmulationf"5 We sha)I/I emplog/ both of theyse approache)s/ topartltlon function originates entirely from efip=aq" W},

demonstrate that they are consistent and interchangeable. nhere W, =[d70,P4(7) =D4(5) = P4(0) is the zeroth

the replica formalism, the N&M is formulated in terms of a;::?:r;liﬁ?z?]r:m 2L;T?§v?/(eTz:gfsl%er are laraer shan
the matrix field theory of the matrix field2%(r,r,7"), gy ger 4

- o one may evaluate the second term in the dot's adt#rin
\évgerer:p,):)ic_ai,z, o 'Zcij)e;r:fibtge rtig'cacglr?;):;%:e ?lfr?cgison the saddle point approximation over the fi€d. In so do-
o . ing, one disregards the mesoscopic conductance fluctuations
(ZP(9)ZP(q’))] andi,j=1,2 are Gorkov-Nambu indexes. g 9 b

The correlation function of the free energies is given byOf the dot-lead interfac®The saddle point value of ths
. - | field is given by the Gorkov Green function gauged by the
(F(@)F(a'))=lim,_op~2[(Z()Z°(q"))—1]. The Q ma- YA ganges By

trix obeys the constrain?=1 and the fermionic antiperi- phased(7):

odic boundary condition in both of its imaginary time argu- Q(7,7') =€l aPa(I A B0( 7 ) iaP(7), (5)
ments7,7’ €[0,8]. The coordinate runs over the volume

of the SC dot and the normal diffusive region. The ma@ix The Gorkov Green function\ g, has a standard form, which
field describes the dynamics of the electrons; it is coupled t@s more familiar in the Matsubara bagige assume the phase
a scalar bosonic vector fiel#,(7) that originates from the of the SC dot without the Coulomb interactions to be zero
Coulomb interactions on the dot. Since we restrict ourselves

—ig%9,®,

2p
B
SulQs.®1=3, | ar

ere the replica vector of gate voltages, is defined in

by the simplest capacitive interaction, E(R), the field A2 _ sbs cost,  sind, ©)
d,(7) is space independent throughout the dot and vanishes s (n.m)= "™ sing, —cosé,’

outside the dot. As a result, only spatially independ@nt

—0) components of the superconducti@ematrix of the dot ~ Where

appear to be coupled to the Coulomb fidid Therefore we

assume that th@ matrix is spatially constant inside the dot, coSf.= €n sing.—= A @)
while it may have a nontrivial spatial structure inside the " JE+ A2 "JEF A

normal diffusive region. The effective action for our geom-

etry contains three terms, and e,= 7 T(2n+1) is the fermionic Matsubara frequency.

The phase rotatioif5) preserves the fermionic antiperiodic
boundary conditions if alW, are evenintegers. At small
S=S4o+ Sr+Sp, (3)  temperaturesT<A, however, one has ca§~0 and sin,
~1 and therefore the Gorkov matrix\g, is (almos} off-
diagonal in the Nambu space and local in time. As a result,
whereS,.; andSy are the effective actions of the isolated SConly 2d(7) participates in the phase rotatidieqg. (5)].
dot and normal diffusive region correspondingly, wiilgis ~ Therefore theodd-integerW, preserve the fermionic bound-
the tunneling action that provides coupling between the twoary conditions, as well. The odd—integéf,’s result in the
We shall examine these three contributions separately. doubling of the period of thé&(q) function with respect to
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the normal case. This reflects the fact that pair transfer is the A(T)=Syo((1) — Syl 0)
dominant mechanism of the charge exchange. B
In fact, one has to be more careful and recall that, accord- 8|A| |Al
ing to Eq.(4), one has to perform integrations over all Mat- T &2 +1K1 (2l +1)?
subara components 6fd,(7) fields?* All nonzero Matsub-
ara components may be eliminated by the gauge 42| AT AT
transformation, Eq(5). As a result, they have no effect on ~—5 € ' (10

the thermodynamics of arsolated dot at all (they are of . o
major importance, of course, once the dot is coupled to th&vhere the last equality assuméscA. In the opposite limit
leads. The remainingusua) integral over the zeroth Mat- ©Of the normal dotT>A, one findsA(T)~7T/4, reflecting
subara componenity, , must be performed explicitly. To this the fact that in a normal dot the odd-integer minima are
end one notices thatTW, enters the action as an imaginary @bsent. Although these minima persist ufite A, their con-
chemical potential in the replica The (replicated free en-  tribution is exponentially suppressedTat-T*, whereT* is
ergy of an isolated dot is thus a periodic function of each ofdetermined from the conditioBo(1) — Suo(0)~1:1*%°

W, with period 2(indeed the chemical potential always en- IA|

ters as exfuN/T}, since the number operatd¥, has only T~
: ; o n|Al/é
integer eigenvalues—the periodicity is appayefte free

energy possesses deep minima at even-integer validg of As a result, there is an important temperature dependence
with quadratic behavior in their vicinity, Fy.(W) associated with the odd-integer winding numbers at the scale
~m?T2W?/(268), where 8=(0°Fyo/dpn?) "t is the mean T~T*<|A|. We shall see below that for the dot strongly
level spacing of the dot. For a sufficiently large dot, wherecoupled to the leads, the corresponding temperature scale is
S8<T, the integrals oveW, may be performed in the saddle slightly different.

point approximation, which results in the even-integer quan- We summarize now our discussion of the action of a large
tization of W,. In a SC dot there are additional minima at SC dot with the Coulomb interaction d&<A. The scalar
odd-integer values 0V, . Consequently the integration over potential in each replica obeys the boundary condition

W, is substituted by summation over all integers. Bt 0
the additional minima of the free energy at odd-intedéys Pa(B) = Pa(0)=TWa, (12

are not as deep as at the even integers, reflecting the fact thahereW, is an integer winding number. The corresponding
the addition of an odd number of electrons is possible bysaddle point value of th@g-matrix field is given by Eq(5).
creating a quasiparticle. We shall evaluate now the actiorhe action of the dot takes the form

cost of the odd minima with respect to the even ones.

<|Al. (11

For even values, say/,=0, one can substitute the saddle S rpl= % mgtW
point solution, Eq.(5), into the action, Eq(4), and obtain ol ]_3:1 1mq"Wa
[we disregard for a moment the first term in E4)]
B (9,8,
+A(T) Sw, mod 2.1 fo dr 4. | (13

Stol Wa=0)= = =Tr{(030,+A) ALY
where A(T) is given by Eq.(10).

2
E—— % 2 1/6ﬁ+ |A|2. (8) B. Tunneling barrier and diffusive region action
" The tunneling action couples i@ field on the dot with

This sum is divergent. However, it is only the difference of the Q(r=0) field at the point =0 adjacent to the tunneling
the action between different replicas that has a physical Sid)arrler from the normal metal side. It has the standard form
nificance. The latter quantity is convergent as we shall see Gy

momentarily. For the odd integers, siy,=1, there is an Si=— ?Tf{QsQ(O)}, (14)
imaginary componenitwT of the chemical potential in Eq.

(4). It may be eliminated by gauge transformation, whichwhereGs is the tunneling conductance.

converts the antiperiodic boundary conditions for the fermi- The action of the normal diffusive region also has the
ons into the periodic ones. As a result, one obtains the samstandard forr®

expression as Eq(8) with the fermionic Matsubara fre- )

qguencye,=mT(2n+1) substituted by the bosonic ons, :ﬂf 2

= oaTh: So=7 . drDTH{[VQ(r) ]}, (15

) whereD is the diffusion constant and the density of states

- . .

S (Wo=1)= — == NG 9 (per spin of the normal region. The total conductance of the

ao Wo=1) ) ; ont || ©) normal region is given bysp=4mvD/L for the quasi-1D
geometry of the normal region ar@h=872vD/In(L/d) for

Employing the Poisson summation formula, one obtains fothe 2D geometry. Herk is the lengthradiug of the 1D(2D)

the difference region andl is the radius of the SC dot. We have omitted the
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frequency termvTr{eQ} on the right-hand sidé.h.s) of Eq. Q(r)=Ayexpiu(r) o o,}, (19

(15.)’ because of t.he assump.uon. tHiafy>Ec>T. At the where u(r) is the normalized “voltage drop” inside the
point where the diffusive region is attached to the normal o - .
normal region: u(r)=(L—r)/L in 1D and u(r)

bulk lead one has to impose the boundary condition =In(L/r)/In(L/d) in two dimensions. The absolute value of
=L)=A 16 the voltage dropy, is coordinate-independent diagorad
Q(r=L)=Ay, (16) . . :
replica and Matsubara spaaeatrix. It has a physical mean-
where A2P(n,m)= 03625, sign(e,) is the appropriate)  ing of the SC rotation angle of the normal metal in direct
matrix of the normal bulk lead. proximity to the dot. One may substitute the solution back
Alternatively, one may imagine integrating out tigr)  into the action to obtairifor a single replica and Matsubara
field of the normal region, subject to the boundary conditioncomponent
[Eq. (16)] and weighted by the actio8;+ Sy . This proce-
dure (we shall describe it in detail in Sec. J\leads to the Sy
effective actionS;p of the interface plus diffusive region

written in terms oQs and A, only. If all the relevant ENer9y where the subscript O stresses that we work with zero wind-
scales are less than the Thoul_ess energ):&g}o!c the dlffuswltﬁg numbers and, is defined by Eq(7). For small energy,
metal, the general form such action may take is e,<A, one hasf,~m/2 and therefore the corresponding
action takes the form

=%[GD02—ZGTCOS{0n—G)], (20)

Gp < |

Sro=—5 2 nTH(QsAw'}, (17) G
- So=?[62—2t sind], (21

where y, are coefficients that depend on the details of the

interface(in our case the ratiG;/Gp). The largeness of the Wheret=Gy/Gp . This action is minimized whed= 6(t)

Thouless energy is necessary to disregard the retardation &fatisfies the equation

fects and thus possible time non local coupling betw@gn

and Ay. Under such conditions, the proximity action, Eq. 9=t cos. (22)

(17), is completely equivalent to those given by E54) The lowest-energy solution of this equation smoothly inter-

and(15) upon the proper choice of the sef,.™ polates betweed=0 for t<1 and§==/2 for t>1. Finally,
this solution has to be substituted into E@1) to find the
IIl. THE INSTANTON APPROACH action costSy= Sy(t), for the zero winding number configu-
ration.

We are interested in the limit of strong coupling between
the dot and the leads, meani@y ,G>1 (the weak cou-
pling limit may be treated in the spirit of Refs. 2292%&or i
Gp>1 the fluctuations of theQ field around its optimal To calculate the oscillatory component of the free energy,
value are suppressed. One may employ therefore the statiohi{d), one has to consider th&-field configurations with
ary phase treatment of the MM for the dot-lead Nonzero winding numbers, cf. E¢L3). Consider, thus, the
interface'® Taking the variation of the action in Eqe14), ~ Simplest even configuration of winding numbers with
and (15) under the conditiorQ?=1 one obtains the Usadel =2 and all othersN,=0 in the remaining p—1 replica.
equation Within exponential accuracy it is sufficient to consider the

“straight” windings: ®,(7)=2#Tr. The saddle point of the
2mvV(DQVQ)— 8(r)G+[Q,Qs]=0. (18  SCQfield on the dot is given by Ed5) and takes the form

B. Nonzero winding numbers

This equation is to be solved for a fix€ds= Q4 ®] given 1

by Eq.(5) and with the boundary conditions in Ed.6). The Qs (n,m)=
solution Q= Q[ ®] after being substituted back into the ac-

tion in Egs.(14) and(15) results in the semiclassical phase where the X2 structure is the Nambu space. In all other
action J®]. The later may then be investigated using thereplica except oh=1 the Qg matrix has the forn(6). One

5n,m0030m—1 5n,m+25in 0m+l

) . (23

5n,m—23in Om-1 — 5n,mcos‘9m+l

instanton approach applied to ti¥ ) field. may check that the Usadel equation is solved by exactly the
sameO(2) rotation as in th&/=0 case, Eq(19), performed
A. Zero winding number in each of the following 22 Nambu blocks:
As an initial exercise, consider the zero winding number Qui(n+1n+1) Qu(n+1n—1)
sector of the theoryW,=0 for a=1,...,2. Obviously it Qu(n—1n+1) Qun—1n-1)

does not produce an oscillatory dependencE (@) [cf. Eq.
(13)] and therefore serves only an axillary purpose. The cosh, siné,
lowest-energy configuration in zero winding number sector =( ): (24
is ®,(7)=0 and therefor&g on the dot is simply given by

the BCSAg, Eg. (6). Solution of the Usadel equatidd8  the Nambu indexes are explicitly stated on the |.h.s. In this

may be written as 2X2 block A = o3 and therefore the matrix from the r.h.s of

sing, —cosé,
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Eq. (24) may indeed be rotated inthy as in Eq.(19). The 1 0 oo 0
only exception are the two lowest Matsubara compongants An= 0 1 ® 0o - ) (29)
=0 andn=1, which form 4x4 blocks of the form 70
on the normal lead &, is the unit matrix in the Nambu
Qu(1,1 Qi1,-1) space. Here the outer 2 unit matrix represents the space
Q11(2,2 Q14(2,0 of n=0 andn=1 Matsubara components, while the inner
one represents the replica spaceaefl anda=p+1 (Pauli
Qar(—1,1) Q2 —1,-1) matrices act in the Nambu spac&/e seek thus for the so-
Q,1(0,2 Q25(0,0) lution of the Usadel equation in the<® subspace, having in
) mind that the solution for all other Matsubara components
cosdy S and replica is exactly the same as/ir=0 sector, Eqs(19)—
cosf, siné, (22). The general solution far#0 may be written as
sin 6, —cosé, ' @9 0 B
siné, —cosf, Q(r)=ANexp[iu(r)(BT 0)} (29)

The corresponding 4 block of theAy matrix on the nor-  \where theu(r) function was defined after E¢L9) andB is a
mal lead is the unit matrix. ObViOUS'y the unit matrix CannOtCoordinate_independent Nambu matrix. Emp|oy|ng the sin-

be unitary rotated into the block equati@b) and therefore  gular value decomposition, it may be written as
solution of the Usadel equation in this block is impossible.

The difficulty originates from the fact that, due to the random . ®, 0

phase of the CB oscillations, the average free energy, B=U 0o O v, (30
(F(q)), is not an oscillatory function. We need therefore to , , ) 2 ) , )

consider winding number configuration of the fo,=2  Where U=g'!373g"'272¢'"171 and V=ge'’373¢'"272¢'"171 are
andW, ;= —2, while all otherW,=0. The contribution to SU(2) matrices and® <0, are real singular values. Substi-
the correlation function from such a configuration is propor-tuting the solution back into the action, one obtafos each
tional to exg2mi(q—q’)}, that is, the lowest normal harmonic Of the two involved Matsubara frequencies

of the correlation functio F(gq)F(q’)). The “dangerous”

: s 1
4X4 block in the p+1)st replica is given by 25¢2=Z[GD(®§+ ®§)—GT(sin 2u,—sin 2v,)
Qll(_li_ 1) Q12(_1’1) X(COS@]__COSZ)], (31)
0,0 0,2 i . .
Qu(0.0 Q:20.2 where the subscript=2 labels the corresponding winding
Q21(1,—-1) Q2A1,1) numbers and the coefficient two on the L.h.s. reminds that
Q21(2,0 Q22,2 two replica were involved. The next step is to minimize the

action over®, ,, u, andv, angles. Three of the four equa-
tions for the minima have only trivial (parameter-
cosb, siné, independent solutions: ®;=0,u,=— /4, and v,= /4.
=| sing — cosé : (26)  The action in terms of the single nontrivial andle finally
0 0 takes the form

cosb, sin 6,

sing, —C0s6,

G
while the corresponding>44 block of theA y matrix is mi- 25:2=TD[®§+ 2t(cos®,—-1)], (32)
nus one times the unit matrix. Here as well the unitary rota-
tion between the points=L andr=0 is impossible. How- where, as abovet=G;/Gp. The corresponding saddle
ever, if one combinea=1 anda=p+1 replica and allows point equation foi®,=0,(t) is
rotation between them, then the unitary rotation may be )
found?® Indeed, combining both “dangerous” blocks into 0,=tsin®,. (33
the single &8 block[i.e., combine Eq(25) with Eq.(26) on ko t<1 the only solution of this equation 8,=0, while

the dot and unit matrix with the minus unit matrix on the f5; t=1 the angle®,(t) interpolates between zerdor t
normal lead, one readily see that they may be unitary con-_ 1) and (for t>1).

nected(since they possess the same set of eigenvalues
The calculations are simplified in the low-temperature
case, T<A, where ,~m/2. In this case the 88 block
takes the form We are now on the position to discuss the suppression of
the CB. Consider first the component of the correlation func-
10 o, 0 tion (ZP(q)ZP(q')), which is proportional to cos2q
Qs= 0 1 ) (27) —q'). As was explained above the relevant field configura-
tions are those having a single replica with,= =2, where
on the dot and ae[1,p] and a single replica withW,= %2, whereae[p

C. CB suppression

®

0 01
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+1,2p]. The corresponding action is given byS#2S.,  charges v} differ from those used in Refs. 11, 25, and 27,
+(2p—2)2S,, (hereS, is multiplied by the number of rep- S€€ the Appendix for details.

licas with zero winding numberf2— 2, and by factor of two,

because two Matsubara components are different between A. Derivation of the proximity action

W= £2 andW=0). Taking the replica limip—0 and em-

ploying Egs.(21) and(32), one finds Our immediate goal is to derive the proximity action, Eq.

(17), starting from Eqgs(14) and (15). To this end, let us
imagine adding the diffusive metal step by step with infini-

28(t)=S+2—ZSO=&{®§(t)—202(t) tesimal shells having conductané&>Gp>1. At some in-
- 8 termediate step of this procedure one has the tunneling bar-
+2t[cosO,(t) + 2 sind(t) — 1]} (34) rier with the part of the normal metal incorporated into the

set of coefficientsy,({). Here (=G /Gp({) €[0,1] is the
whered(t) and® ,(t) are the solutions of Eqé22) and(33),  running parameter such tha4(0)= 6, ;,G+/Gp, and S(0)
respectively. As a result, the contribution to the correlation=Sr is the bare tunneling barrier action; whitg(1)= v,
function with the unit period has the form and S(1)=Srp is the full proximity action of the barrier
exp{—4S}cos 2m(q—q’'), where the factor of 4 denotes the “dressed” with the diffusive metal. At each step one adds
fact that two replica are involved in the correlation function another thin shell of the diffusive metal. The action of the
and the winding number is two. We shall discuss this resulgntire system takes the form
in more detail in Sec. VI, after deriving it using other meth-

ods. For the later reference we need to calculag2S/t); Gp — |
employing the saddle point equatio(®?) and (33), we ob- S({+60)=——45 Z’l n(OT{(QsQ)'}
tain
6G
+ g THQ-AW, (36)

J(28\ G
tZE(T):—?D[(@%—ZGZ]. (35)

whereQ is the field right on the boundary between the new
As was explained in Sec. Il, the parity effects sets in atshell and the already integrated region. The action of the
small temperatur@ <T* <A. Technically it manifests itself newly added shell has the simple form¢G/16)Tr(Q
in the appearance of the odd winding numbers. The calcula= Ay)?, sincedG>Gp>1 and therefore the matri@ has to
tions for the field configuration withW;=1, andW,,,  be rather close ta\y [in the leading order in §G) * one
— —1 are exactly parallel to the one for the even windingmay disregard all higher-order term@ ¢ Ay)" with 1>2].
numbers. The only difference is that there is the single “dan-The next step is to integrate out tkgfield and obtain the
gerous” Matsubara frequency=0; consequently there is Nnew sety,({+ 6¢). We perform this procedure in the saddle
no outer X2 Matsubara structure as in Eq27) and (28)  point approximation. Taking variation of the action, E86),
(the replica and Nambu structures are exactly the $ahsea  under the conditiorQ?=1 one finds the saddle poifits-
result, the action is exactly twice smaller than that for theade) equation
oscillations with unit period. We thus obtain for the compo-
nent of the correlation function with doubled gate voltage *
period exg—2[S+ A(T)]}cosm(q—q’), where the factor of GDZ 1%(DI(QsQ)'~(QQg)' - 6G[QAN—AnQ]=0.
2 in the exponent originates from the two replicas involved. - 37)
Finally, let us discuss the technicalities of the replica
limit, p—0."° There are altogether” distinct configurations  |n the leading order i /5G<1 one obtains for the saddle
of the winding numbers that contribute to the correlationpoint solution
function(ZP(q)ZP(q’)) with the same oscillatory factor, say

exp2m@i(g—q’)}. They correspond to thp possible choices Gp <

for W,=2 and p independent possible choices &, Q=An+ o= 2 I 7[(QsAn)' Any—An(QsAn)'T-
=—2. There is thus the combinatorial factor @f in 20G =1

(ZP(q)ZP(q’)) that is cancelled against the same (38)

factor in the denominator for (F(qQ)F(q'))

g o Setting it back into the action, one finally finds
=limp_op *[(Z°(9)ZP(a") —1)].
pHO

[’

Gp| — B
IV. PROXIMITY ACTION S({+680)=— ?D IZl NT{(QsAn)'} + 75 |;1 Ky vk

In this section we discuss the derivation and simple appli-
cations of the proximity action approach to treat the interface l+k_ -k
between the SC dot and normal lead. This method was re- XTH(QsAw) (QsAn)™ ",
cently suggestéd?® for the analysis of superconductive-
normal metal transition in a 2D proximity-coupled arfy”  where we employed the fact thd6=Gp /5. One ends up
Notice that our definition of the running parameigand  with the following evolution equations foy,({):

(39
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dy, 1. -1 For smaII_@ one hasuy(0)=~0dgue(0); employing Eq.
ran 2 K(T+K) ve¥isk— 7 E K(I=K) vy —k - (43), one findsdgug(0)=t/(1+1). As expected, one obtains
4 k=1 k=1 the resistance addition rule
(40)
To solve this set of equations it is convenient to define the GN'=Gp'+Grt. (45
functionu(¢,0)==_,1v,({)sin(®). With it's help Eq.(40)
takes the form 2. Andreev conductance
U,=—Ulg, (42) We shall concentrate now on the temperature region

. o N . >T> 6, where the S@ matrix may be written in the form

supplemented with the initial cond|t_|ou(0,®)=tsm®, Eq. (5) with 6,= /2, which corresponds to infinita [the

where, as beforet=Gr/Gp. Employing the method of |eading effect of the finiteA is to renormalizeEc*—E¢*

characteristics, one may write the solution of the latter prob-1 g/2,A (Refs. 28 and 24. In this case thedg matrix is

lem in the implicit form: off-diagonal in the Nambu space and time local. Since the

L _ Ay matrix is diagonal in the Nambu space, only even powers

u(£,0)=tsin®—{u(£,0)]. (42) of (QsAyN) may contribute to the action. As a result, one

As a result, the functioniy(®)=u(1,0), which hasly, as  finds for the proximity action

its Fourier coefficients, may be found as the solution of the

following differential or algebraic equations: G <
Srp[P] =~ ?D 121 721Tr{(QsAN)2]}
d(u -
o TO +UgdoUo=0, Ug(®)=tsiM®—uy(®)].

co 2P
G B B
(43 :_TDE (_1)]7’212 dTl---f dTy
. .. . =1 =1 JO 0
The last expression solves the problem of writing the actior ¢ .

of the barrier and the diffusive region in the form of E#7).
Note that to derive this result we have not used a specifi

21

form of Qg and Ay (other than the fact tha®3=A%=1). X e TIG (11— 1,)e X DG(1,—15) . ..
Therefore the action and the coefficientsare equally ap- 21 ()
plicable to any other setup. The only two conditions that e TPARNG(1y— 1), (46)

were employed ar&p>1 to disregard localization effects
and perform the saddle point calculations d@&g>Ec to  whereG(7—7')=—iT/sinwT(r—7') is the Green function
disregard the frequency term in the action and justify theof the normal leadthe Fourier transform of\(e,,) to the
structure of Eq(17). The conditionEr,>E also allows us  time domain isAy(7,7')=G(7—7')o3]. If the external
to neglect Cooper-channel interaction in the normal conducyoltage V() is applied to the SC dot, the phase is to be
tor, while deriving proximity actior(cf. Ref. 11 for the dis-  ynderstood asb=[d7V(7). Calculating the second varia-
cussion of general situation tion of the above action with respect ¥(7), one finds for

For the latter use we definé= 0(t)Eu0(77/2) and @2 the |inear(Andree\) conductance
=0,(t)=ug(7). According to Eq.(43), these two angles
satisfy =t cosf and®,=t sin®,, respectively. Comparing B
these relations with Eq$22) and(33), we conclude that the Ga=Gp2, (—1)'(21)2yy=GpdeUo(m/2).  (47)
anglesd and®, introduced here coincide with the instanton =1
angles introduced in Sec. lll.

Employing Eq.(43) for ®~mx/2 one finds

B. Physical observables

In this section we repeat briefly the derivation presented A:—GT S”_w , (48)
originally in Ref. 11. 1+tsinég
1. Normal state conductance where 6=t cosf=uy(n/2). One therefore obtainsG,

-G2 < = >
Consider for a moment the dot in the normal state with a_ G1/Gp+O(t) for t<1 andGa=Gp+ O(1h) for t>1.

small applied bia3/(7) =V cosw,7. The dot's Green func-
tion takes the formQg=exp{i®(7)}An(7—7)exp{—id(7)}, C. Instanton treatment of the proximity action
whered =Jd7V(7). Substituting suclQs in the action and To calculate the proximity action on the simplest instan-
taking the second variation with respectV¥g7) at V=0, ton trajectory ®,(7)==T7W and ®,(7)=0 for a
one finds for the linear normal state conductance €[2,2p], one maylemploy e.g., the Matgubara bési= the
o Appendix for calculations in the time domairEmploying
GN:GDgl 129,= G deUg(0). (44) Er?d§23) (modified in the obvious way for arbitraiy), one
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(QsAn)?(n,m) SY=G+/2. Ast=G+/Gp approaches unity, a kind of phase
0 | transition occurg? which reveals itself as a nonanalytic be-
=(-1)'8, 1 S én-w)Sgri€n) ; havior of SH(t) att=1.
’ 0 Sgri€nw) SN €n)

(49 D. Landauer approach

Employing Nazarov’s techniquéd,one may show that
the functionuy(®) is directly related to the generating func-
tion of the transmission coefficients

in the replicaa=1, while (QsAy)? =(—1)"'0y in all other
replica. As a result, for all eveh=2k the action ina=1
replica is not different from that in the othep2 1 replica

and therefore does not contribute to the total action in the N T sin®

replica limit p—0. On the other hand, for odid=2k—1, ZGpUy(®)=F(0)sin®= o SN ,

there are|W| Matsubara components, wheee=1 and a 2 a=11-T,sirt(0/2)

#1 replica come with the opposite signs. Employing Eq. (53

Egg)licgnl?njiltr)] ds for action on the instanton trajectény the whereT,, are eigenvalues of thdx N matrix t't describing

transmission between the dot and the lead. Factor 1/2 on the
G. = I.h.s. takes into account th& is defined for the two spin
b . . .
Swi(t)=—|W| - kgl Va2 components. Performing the Fourier transform one finds
1 4(-1)'t S
G 2 T - — —2ugl
:—|W|?D f d®u0(®)—f dOuy(®)|, (50 ZGDY' | Z’le ' (54)
0 w2

o . _ whereT ,=cosh?u,. As a result, the proximity action takes
where the last equality is a direct consequence of the defini,o compact form:

tion uy(®)==|_,lysin(®). Employing the differential
equation(43), one finds

N
Sro=— 2, Trin(1+e”*QsAy)

Jd S G /2 T
t2—(—2):—D d@a@)ug—f d0dgu? \
Jt\ t 8 2 1 Ta 2
. =—§21 Trin{ 1= *(Qs=Ay?|. (59
= —2[267- 03], (51) . . .
8 In the last expression we have omitted a constant which goes

. . ) . to zero in the replica limit. Exactly the same interface action
Comparing with Eq.(35), we find an exact coincidence of is known in the supersymmetric formalidf} (notice that

the real-space resuIt,_EC84), am_j the proximity ac_tion,_ Ed- here we deal with spin 1/2 electrgnOne may calculate
(50), S(t)=S,(t). Notice that, since thérandom diffusive 1 the action on the instanton trajectory to find the renor-

region was integrated out upon derivation of the proximity ,~i-ed charaina enerav. Emplovin 2 and recallin
action, the phase of the CB oscillations is not random. In hat S, = gng oy ploying EG4) ¢

sense the proximity action represents a typical diffusive re- (Go/2)2Yak—2, one finds

gion (mesoscopic fluctuations are omitted in the derivation 1 N T2

given above One may therefore calculate directly typical Si=—= > In( 1— —“) (56)
Z(q), without resorting to the correlation function. From the 2 i=1 (2-T,)?

two smallest winding numberg/=1 andW=2 one finds
Z(q)~expg{—[S,+ A(T)]}cosmq+exp—S,}cos 2rq+ - - -,

in agreement with the result of the previous section.

This expression is to be compared with the one for the An-
dreev conductance obtained from E¢§7) and (54):1718

It is worth mentioning here that the general expression for N 2
the instanton action in the case of the normal island, derived Gpa=4 Ta (57)
in Ref. 14, may be presented in the form similar to EG4) a=1(2-T,)?
and(50):

(cf. with the normal conductand®y=GpZ%y,=23,T,,

Gp < Gp 7 where 2 stays for sp)n Factor 4 on the r.h.s. of Eq57)
S\%=|W|T > y2k_1=|W|?f dOuy(®) stems from the fact that Andreev particles carry charge 2
k=1 0 and no spin. One may thus identify the combinatigp
Gp =T§/(2—Ta)2 as the Andreev conductance in chanael
=|W| 16[§+2t(cos®2+1)], (520  The renormalization of the charging energy is therefore
given by
and only everW are allowed for the normal case. It is easy to N
see, using Eq(33), that in the entire intervaGy> G the e Si=[[ (1-7,)%2 (58)
value of the actiorS} is the same as in the tunneling limit: a=1 “

054502-9



FEIGELMAN, KAMENEYV, LARKIN, AND SKVORTSOV PHYSICAL REVIEW B 66, 054502 (2002

This may be compared with the corresponding factor for the *
normalspinlessparticles** I1,(1— T ,) Y2 Indeed, in our no- IT ) W,
tations the normal instanton action &)= (Gp/2)2y2_1 n=1 _[Ca aexpl’|w |In(GAEC)]

. . o a A _2T ’
=—-2,In(1-T,); for spinless particles one has exp (W) 2T
{—8%/2} for the CB suppression. There is thus a perfect 7&[‘“ (N /)
analogy between Andreev and normal spinless charge fluc- ? (62)
tuations mechanisms, provided that the normal transmission .
coefficients,T,,, are substituted by the Andreev onés,. up to the terms of the ordeéF/(GaEc)<1. Combining to-

From Eq.(58) one may extract some general results. Ingether f_;lll the factors, one finds for the one instanidf,
the tunneling limit 7,<1 in all channels, one finds, =1, trajectory
=G,/8. In the diffusive metal interface the transmission ei- )
genvalues are distributed according to the Dorokhov é —eima % dz (E) o {81~ IN(GAEC/2n?T)}
distribution®?® P(T) =G /(4T1—T) (for spin 1/2 par- Z, 7<11—|z|2\ 27
ticles). The corresponding distribution for the Andreev trans- _
missions is given byP(7)=Gp/(87y1—7), as a result —ei’TQEInE 63

Ga=Gp . For the typical action of the diffusive interface one 2T T

finds thereford S;) = m2GA/32. L _ _ .
The cutoff of the logarithmically divergert integral origi-

nates from the following consideration. In the presence of

the charging energy term the Korshunov instantons (&),

are not true zero modes of the action. Thdependence of
We now expand the action, EG46), to the second order the action brings the factor ekp(T/2Ec)|z|%/(1—|2]?)} to

in deviations from the instanton trajectoy,(7)=7TTW, the integral. As a result the effective integration range

+6®2(7), where §0%(0)=56D?(B). After diagonalization shrinks to |z|2<1—T/Ec<1. The renormalized charging

of the resulting quadratic form one finds the following spec-gnergyE.. is defined as

trum of the small fluctuation¥>331

E. Fluctuation determinant and summation over many-
instanton configurations

=T . G E _EcCh e 51 (64)
A c=—%5 7 .
A= T = Wal [+ Wal 2| W), (59 2m

It is also instructive to look at theé/,=2 contribution to the
wheren e [ —o,%]. For T<Ec there are PNy|+1 (@most  partition function
zero modes labeled by<|W,|. One of themn=0 is the
trivial shift of ®,(7) by a constant, whereas the remaining Z, pimg 1 o
2|W,| zero modes are associated with the deformation of the Z_o = o1 % é d°z,d*z,
instantons. The general solution of the saddle point equations

(for T<Ec) known as the Korshunov instantbnmay be [ 1 1 1
X

written as -
(1-1z5H(1-2]3) (1-z,25)(1-Ziz,)

(Wil sgnWy)

2miTr
_ -z 2
e2i®a(7) — e—_k ’ (60) 5 % o (8,-2 IN(GAEC/272T)}
K=1 1_e27TITTZ~Ikr 20
wherez, is a set of|W,| complex numbersinstanton coor- o Ec\? ,Ec 7
dinate$ that parametrize the|®/,| dimensional zero—mode T a oT In B (65)

manifold. The instanton coordinates,, are complex num-
bers from inside of the unit circle. One may thus characterizd he leading power of the large logarithm comes from the
any deviationd® ,(7) by 2|W,| zero-mode coordinateg,,  diagonal term of the Jacobian, E(61). This term corre-
and remaining transversal modes having nonzero masses, Eponds to the noninteracting instantons approximation,
(59). The Jacobian of such transformation may be found irwhich is justified therefore by the large parameteElT)
the standard way and is given by >1. Notice that the(repulsivg interaction correctiorthe
off-diagonal part of the Jacobian, E@1)] comes with If
1 1| and not It, as may be naively expected.
J= AL de 1-27 || (61) Due to the large logarithmic factor, originating from the
integration over sizes of each individual instani@e., ne-
wherel,ke[1,W,|]. The fact that the Jacobian vanishes if glecting their interactions one may treat positive and nega-
two of the coordinates coincide signals the repulsive interactive instantonganti-instantonson the equal footing. Strictly
tion between the instantons. speaking, a combination of instantons and anti-instantons is
The Gaussian integration over the massive degrees afot a saddle point solution. However, relative weakness of
freedom normalized by those in the zero winding numbeiinstanton interactiongo log factor in the second term in Eq.
sector results in (65)] makes it possible to consider an ideal gas of instantons
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and anti-instantons. The contribution to the partition functionwhere GA(Zo)=Gp=/_1(—1)'(21)2y, () is the running
with a given winding numbeW is given by all configura- value of the Andreev conductance, agg=In(GxEc)/ ).
tions havingm+|W| instantons anan anti-instantons in an  (Note that this definition of differs from that used to derive
arbitrary order. Taking only the terms with the leading powerthe proximity action in Sec. 1Y.The further calculation is
of the logarithmgdiagonal term of the Jacobipone finds®>  essentially similar to that in the Keldysh formali€hOne
obtains the following set of the evolution equations for

= I 1 (La):
Z(q)=2 e™Wa D
(=2 > ginum+MM! | . 3
Y2l
B | 9 = GaD Iym-FZEQ_(—l)WI+k)ym+2J,
This series may be summed up into an unexpectedly simpl&here we have omitted the subscript Since only the even
expression: coefficients are involved, it is convenient to define the func-
tion u(Z,0)=[u(¢,0®)—u(¢,m—®)]/2, which contains
Ec [Ec only even harmonics. In terms of this function the RG equa-
Z(q)=2Zgex ?In(?) cogmq) (. (67)  tions (70) take the form
The simple§t w.ay to checkit is to ex_pand back EY) in a U= [U(0)tan®]e (71)
double series in powers dE and e'™. The role of the Ga({)
anti-instantons, therefore, is to convert a¥afy), which -
may be expected from the instantons only, into"fas)). where the Andreev conductance @&(¢)=Gpue({,7/2).

Under the conditiorEc<T<Ec the interaction between The initial condition for Eq.(71) is u(0,0)=Uo(®), with
instantons can be treated perturbatively; for the lowest-ordde Uo(®) function evaluated above. Let us mention for
correction we use the last term in E@5) to find for the completeness that in the normal case the corresponding RG

gate-voltage-dependent free energy equation takes the formu,=[2/G\({)][u(®)cot®/2)]¢ ,
where the running normal conductance according to(&4).

~ Ec is given byGN(f):GDEfO:ﬂZ?’l(é'):_GDU@(é:O)-
F(q)=—Ec|In T cog mq) The key parameter that determines the strength of phase
fluctuations is the Andreev conductar@g({). We consider
2 E the large bare valu&;,(0)>1. Upon integration over fluc-
- _Ccog(gwq) 4]l (69) tuations ofd®(7), the effective value 0G4(¢) decreaseéhe
24 T physical reason of this phenomena is a partial loss of the

phase coherence between multiple Andreev reflectiars
becomes comparable to unity at some time sc@lg!
=(GAEc) lee. At longer times coupling between the dot

We retain the second term in E@8) since it will be impor-
tant at temperatures comparable with the parity-effect tem

perature T*; see Sec. VI. It also demonstrates that the

instanton-instanton interaction corrections are small only ifind the lead is weak; thus the 52??_eq)f(lg)c):tuations grow and
E <7 autocorrelation functiorC(7)=(e''*'" ) decays fast.
C .

It is natural to associat@ . with an effective Coulomb en-

ergy of the island connected to the witg; . We will show
V. RG TREATMENT OF THE QUANTUM FLUCTUATIONS now that the estimate fdR . that follows from the RG equa-

We next approach the problem of the CB from the differ-tion co.incides(within exponential accuragywith the results
ent perspective. Instead of calculating the action on the in®f the instanton analysis. _
stanton field configurations, we shall perform the RG analy- Equation(71) may be solved with the method of charac-
sis of the coefficients, upon integrating out fast fluctuations teristics. We define the functian(®)=u(®)tan® and then
of ®(7). To this end we writab(7)=®S(7)+®7(7), where introduce new “space” and “time” variablesé=—Insin®
superscripts andf denote the slow¢,,<) and fast @, andr which is defined via the relation
>()) component of the field, respectively. The running cut-
off Q) runs fromQ~GjE: down to the lowest Matsubara
frequency()~T. We next substitute thé field into the SC Ga(0)
proximity action, Eq(46), expand to the second orderdrl,
and integrate out the fast field fluctuations. The bare propaln terms of these new variables the RG equalioh takes
gator of thed' fields may be read out from the action Eq. the slimple formw =v,, yieldingv(§,7)=vo(§+ 7). As a
(46): result,

d¢=dr. (72)

27 84y e "cos® .

(@Y m) DL~ wm) = 69 UE(n.0)= St arcsinie "sin®)]. (73

wm|GA(§Q) '
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The dependencé(7) can be now found from Eq72) with  mal conductor with very low Thouless enerd;,<Ec. In

the Andreev conductance given Ba(¢)=GpUe (L, 7/2). the last case the RG procedures involves simultaneous inte-
Our goal is to find a scal&,, where the Andreev conduc- gration over phase fluctuatiors(7) and diffuson/Cooperon

tanceG, becomes small. To find, we notice that in terms modes in the normal conductor. As a result, the full func-

of the RG timer the smallness o6, means the limit—c~.  tional RG equation contains three terms in the r.h.s.: one

Then, using definition of given by Eq.(72), we find coming from Eq.(41), the second is similar to E471), and
the third contribution accounts for the Cooper-channel repul-

Gp (=  Ug(arcsine™") sion in the normal conductdcf. Refs. 11 and 25 The re-
fe=— TJO TT sultant RG equation cannot be reduced to the set of even

harmonicsu only; we are not aware of any method to solve
D ~ it apart from “brute-force” numerical integration. Consider-
= TJO dOue(9). (74) able simplification of the problem treated here stems from
the fact that, due to the conditioB,>E, all diffuson/

Recalling the definition ofiy(®) and comparing this result Cooperon modes may be integrated deffore (means at
with Eq. (50) we conclude that.=S;. As a result, the am- larger energies tharthe phase fluctuation®(7) become rel-
plitude of the lowest oscillatory component osmq) of the ~ €vant. This procedure leads to the action functicdhg that
free energy, from the RG point of view, is given by the depends uporb(7) trajectory only, as defined in Eq46).
precisely the same exponential factor as in the framework of hus the results presented in this section can be considered

the instanton calculation. as “minimal generalization” of those obtained in Ref. 26.
Yet another instructive way to approach the problem
is to follow the renormalization of the instanton action. VI. DISCUSSION OF THE RESULTS

According to Eg. (30), Sw({) = —|W(Gp/2)Zyak—2(8)
—|W|(Gp/4)[5?dOUy(®). Employing Eg. (71), one
finds

The main result of our study, given by E@8), applies in
the temperature range

dgw |W|Gp Ec<T<min{Ec,T*}, (77)

qZ - GaD) 2[U(0)tan®@]lo . mo=—|W, (75

. . The conditionT<T* ensures that both even and odd wind-
Wherg in the last equality we have useq thap (£) ing numbers contribute to the partition function, since
=Gple(¢,m/2). (In the normal case one find8Sy/d{  A(T)<1: c.f. Eq.(10). The two lowest oscillatory compo-

—|W|/2; only evenW are allowed. From the dimensional nents of the free energy are given then by &8). At higher
analysis one expects(q)~Qexp{—S;tcosmq+---, where  temperatureT~T*, an addition of an odd number of elec-
(0 ~EcG, is the cutoff energy. We may now renormahze trons to the dot becomes possible, changing the relative am-
down the cutoff energy)—Q({)=0e"¢, simultaneously plitude of the harmonics. On the level of the partition func-
following renormalization of the actiot; —S1(¢). Accord-  tion the components with odd winding numbers acquire the
ing to Eq.(79), $1({)=81—¢. As a result, temperature dependent factor €xpd(T)}. As a result, one
e finds for the gate voltage dependent free energy:
Q(¢)e Sd=const. (76)

This means that the lowest oscillatory component of the free
energy is expected to be temperature independent, in agree-
ment with Eq.(68) (up to the In factor, originating from the
zero modep The instanton calculation is done &t0; alter-
natively the RG calculation presented above looks for

such thatSy(Z.)~0 (the scale where the instantons do not -
cost anything In view of Eq. (76) it is not surprising that E coq2mq) + (79)
they yield the same result. Moreover, one can renormalize 4T ™ '

down to any intermediate scafe[such thatG,({)>1] and

then calculate the instanton action with the current param- Finally atT>T* the parity effect disappears and only the
eters{y,({)}- the result is still guaranteed to be the same.normal(unit) oscillation period remains in the free energy
Notice also that the renormalized actioBy({)=Sy

whereT* is the parity-effect temperature given by Edl).

Ec
F(g)=—Ec/e M

)COS(WQ)

E 2
A(T) cl_L
+|(1—- eZT)In<T) 6)

— |W|In(GE:/T) coincides with the result that comes from Al o[ Ec) 77_2

the instanton action together with the massive Gaussian fluc- . ¢ u T

tuations, cf. Eqs(62)—(65). The effect of the zero modes F(aq)=—Ec aT cog2mq)+---. (79
(INEc/T in the prefactoris missed in the one-loop RG cal-

culation. Notice that if INEc/T* >/+/6 there is the sign change of the

Finally we comment upon the comparison of the approacltos(2rq) component aff~T*. Moreover, unlike the low
used in this section with Ref. 27, where the same kind of RGemperature case, where the amplitude of the dominant har-
approach was employed in the case of two-dimensional nomonics was weaklylogarithmically) temperature dependent,
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Eq. (68), at larger temperature there is the stronger depen- ()
dence[ ~ T YIn%(Ec/T)] of the amplitude. The characteristic ' ' ' : :
crossover temperature is determined from the relation

A(TH~In(T'/E) and is given by

A (80)
T IN(A/GAS)’
where we have used the fact thgt~ G, . ] ] ]

We emphasize an interesting feature of the weak Coulomb t=GJ/Gy )
blockade compared to the usual one: although the role of 0.8 —
effective Coulomb energy is taken by the effective energy o ==
Ec<Ec, the oscillation amplitude depends relatively 52 06 P
weakly upon temperature within the range given by &q). 04} - g
This is to be contrasted with the usual case of an island P e
connected by highly resistive contacts: at temperatlres 5« 02t
>E. oscillation amplitude vanishes exponentially fast with 0 ’ . . . . .

T/AEc . 0o 05 1 15 =2 25 3

Next we shall discuss the quantitative value of the renor- t=GJG,

malized charging energ¥c, which determines both the ) _ ) N
magnitude of the CB and the region of applicability of our FIG. 2. (@) Normalized actions 8, /G, (full line) and 255/Gy
results. To this end we need to evaluaig(t) (wheret  (dashed lingas functions oft=G;/Gp . Both graphs interpolate
—G;/Gp), which is given by one of the two equivalent between 1 in _the tunneling limit and /4_|n the diffusive limit.(b)
expressions, Eqg34) or (50). In the two limiting caseg Andreev(full line) and normaldashed ling conductances normal-
<1 (the tunneling barrier limjtandt>1 (the diffusive metal ized by Gp as functions ot.

limit) the answer may be found analytically. One obtains Another open question concerns the behavioF 6] in

szﬁc Ga[1 in the tunneling limit, the zero temperature Iimm<EC. As temperature decreases

n—GZEC ~ 78 | 724 inthe diffusive limit, beIpch . all _a_pproximate methods that we used run out of
A their applicability range: the renormalized conductae
(81 ; . .

drops below unity, fluctuations become strong, and there is

where the Andreev conductance is given by E@#). Recall no a priori reason to treat them within Gaussian approxima-

that for a normal dot the corresponding exponent is given byion. Whereas the overall scale of the oscillation amplitude is

Gy/2 in the tunneling limit andGy7%/8 in the diffusive

limit. We observe that upon the same dissipative conductance (a)

the SC dot exhibits factor of 4in the two limiting cases " " " " "

Sl:_l

smaller action. Therefore one may observe a sizable CBin @ 1fF------ ~ -
the superconductive state, while in the analogous normal dot 28‘“ ==

the CB is practically suppressed. The crossover behavior for
the SC actionS;(t), the normal actiorS}(t), and the An- 057
dreev conductanc&,(t) as a function ot=G;/Gy is de-
picted in Fig. 2. Dependence of the same quantities on the , , , , ,
resistance’sgl of the normal region at fixe® is demon- 0 05 1 15 2 25 3
strated in Fig. 3. t=G /G, (b)
In the caseEc<T' the crossover betweeR<TT and T ' ' ' ' '
>T" regimes leads to the sharp drop of the oscillation am-
plitude by the factor Ec/4TT)In(Ec/T"<1. The same drop
in the residual Coulomb blockade may occur as a function of -+ 0.5} ~ -
magnetic field, due to the suppression of thand thus off '
by the magnetic field. This may result in a strong negative o

88,/G

G/G;

A/GT
4

magnetoresistance at low temperatures of a granular media 0 . . . . .
made out of small superconductive graic§, e.g., Ref. 3% 0 05 1 1.5 2 25 3
for the discussion of relevant experimentShis effect can t=GJ/G,

oceur if the low-temperature oscillation amplituﬁ@ Is suf- . FIG. 3. The same as Fig. 2 but normalized®y. Notice that
ficiently large to destroy Josephson coupling between 9raiN$phe normal action exhibits a continuous “phase transition'Ggt

SO transport of Cooper pairs between grains is blocked by Gr. The Andreev action has a maximum@g~0.8G, which

Ec . However, quantitative theory of such an effect is still tois a direct consequence of nonmonotonous dependence of the An-
be developed. dreev conductance on the resistance of the diffusive metal.
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probably given by its first harmonic, E8) at T~E, and
is of the orderEc In(Ec/Ec), the precise shape of the oscil- —o @) +oo
lations is still to be determined. It is possible that in the

—0 limit the functionF(q) becomes nonanalytic at the de-

1/

generacy poingj=1/2. An extreme case of such a nonana- —co+if3f2
lytic behavior—finite steps idF/dq at half-integerg—was
found in Ref. 24, where the Andreev conductance was com- - ) -
pletely neglected. oo !
)
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where® =diag(®- ,®.) is a matrix in the Keldysh space,
with ®_(t) and® _(t) being the fields residing on the for-
ward and backward branches of the Keldysh contour. In the

normal Iead/vXN(E)=]xo(E)®03, whereo; is the Pauli ma-

trix in the Nambu space, and the matrix,(E) acts in the
The method of the multicharge proximity action was ini- Keldysh space:

tially developed?®in the Keldysh real-time representation.

Here we show how the Matsubara proximity action, &), . 1-2f  —2f

may be obtained from its Keldysh analog by analytic con- AO(E):<2(f_1) Zf_]_)’

tinuation to imaginary time. Since this Appendix serves il-

lustrative purposes we will consider the simplest cdse f(E) being the distribution function.

=0. As discussed in the bulk of the paper, the forn-¢§) Tracing over the Nambu space reduces the agé#@®) to

is unknown afT =0 since afT<E. the dilute instanton gas the following form:

approximation fails and one has to consider an interacting .

instanton liquid. Nevertheless, the overall scale of oscilla- . Gp n *

tions in F(q) may be inferred from the single instanton ac- Sprod P(1)] =~ 4 z‘l (=1) 72“ffmdt1' - diggtric

tion, which is temperature independent and may be calcu-

APPENDIX: INSTANTONS IN THE IMAGINARY-TIME
PROXIMITY ACTION

1. Transition to imaginary time

(A4)

lated atT=0. X @APMIA (t,—t,)e 2PIA (t,—ts) . . .
To proceed we need to establish a correspondence be- . .
tween our notations and those adopted in Refs. 11,25, and e AP0 A (t,,—ty), (A5)

35. The latter notations will be designated by a prime. )
Firstly, our conductance quantuf®,=e?/27 is different where the trace LS taken only over the };eldyzhbsp?]cea .
) ; ; Transition to the imaginary time is achieve the defor-
gggn?(;;;;r?ducsr:a:rg;r;;:o;zrzafe?;?édsiiondly, the FUNING  ation of the Keldysh c%ntoit which initially run )(/)ver the
. time axis from—oo to « and then in the backward direction.
The desired deformation introduces a vertical segment of
length 8 at some time =t so that the contour originates at
—oo+iB/2, runs through the pointgy+iB/2t, to ©, and
then back throughy,ty—iB/2 to —»—iB/2, see Fig. 4. For
Thus, the Keldysh multicharge proximity action may be writ- the ‘purpose of .the .evaluatlon of the instanton action the
ten in our notations 48 choice of the point, is somewhat arbitrary. Note, however,
that were we to consider, e.g., the correlation function of the

form (N(q)N(q’)), it would be necessary to allow for adia-

GD ~ ~ ~ b H H A !
D) ]=—i—-2 Tr (A2 atic evolution of the gate voltage=q(t),q’=q(t’) and to
Sorod (1)) 8 r1§=:1 7D THQsAN) (A2) introduce two vertical segments at timeandt’.

§:7r,1: Gp

" 87729'.

(A1)
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The analysis is simplified in the zero-temperature casewhich is obtained by regularizing tE[1/(t—i0)+ 1/(t
Choosing the position of the vertical segment@t0, we  +i0)]/2 and making use of analyticity &' ®(?) in the up-
deform the forward segmeiit-,0) of the Keldysh contour per half-plane. As a result, the integral in EA9) is trans-
to the upper imaginary half-axis and the backward segmerformed to
(0,—x) to the lower imaginary half-axis. The remaining hori-
zontal appendix of the Keldysh contour running from O<o

n
and then back t¢=0 can be neglected as it does not con- f (%ezifb(m)
tribute to thermodynamic quantities. —wk=1\ T
In qrdgr to continue the functipv\o(t) to the com?plex n 20 (o 1) _ @2 ® (7o 1)
plane in time one should employ its analytic propertie <1 | =i
deforming the contour to the imaginary axis the element k=1 T2(k—1)" T2(k+1)
A7) enters only with=0, and the element2%(7) enters .
only with 7<0. Under this condition the functiofo(7) can —me? W Sy 1)~ Towrn)) |, (ALD)
be substituted &}
1 1 1 where 7o= 75, and 7, + 1)=7,. Expanding the last product
]\O(T)_>F(q-)( 1 1), F(r)=——. (A6)  and combining similar terms we rewrite it as

Equation(A6) solves the problem of the analytic continua- n

tion of the Green functiom o(t). (- 1)n5(0)+m§=:l Ca(—=1)" ™Ky, (A12)
The trivial matrix structure of EqUA6) ensures that each

term in Eq.(A5) can be written as a multiple integral of the

; : where
single function

b (1), for >0, o ™ idr
d(7)= A7 —(—j)m 12K g 2id( )
. |<I><(7'), for 7<0, (A7) Kn=(=1) f 1 ( e
defined on the whole imaginary axis. The infinitesimal ele- M Q2i(ryk-1) _ @2P(r2cs 1)
mentdt is transformed to <11 . (A13)
k=1 T2(k—1)" T2(k+1)

—ook=1

—idr, for >0,
dt— idr, for r<0. (A8) The integrals folK,, are calculated recursively with the help
. 26 of the relation
Finally, we obtair
o 2id 2id 2id 2id
B GD E I %e_zmj(ﬁ.)e | (Tl)_e id(7p) e | (7'2)_e id(73)
Sprox[q)(T)]__Tnzl Y2n _xdTl- . d7py T T — Ty T,— T3
x @2 P(1) =2 (mx)+ ... 72i<l>(1'2n)|:(7-1_ ) i g2 P(1) — g210(73) (AL4)
T1— T3 ’

XF(TZ_T3)...F(72n_Tl), (Ag)
that coincides with Eq(46) in the zero-temperature limit. ~ Thereby we geK,=2"W. For anti—instantons withV<0
the same analysis yield§,,=2"|/W|.
Now summation in Eq.(A12) becomes trivial and we

) ) ) _obtain for the instanton action
Here we calculate the action on the trajectories for which

e?®(M s an analytic function in the upper half-plane. For .
such a solution, the instanton’s winding numbeWw=A® __2>Db _ 4N _(_ 1N
= [d7(ad/7) is positive. Integration over, ,t3, ... ,ton_1 (7] 4 ngl Vel (= 1)"6(0)+ [WI[1= (= 1)"]}.

2. Instantons in time domain

is performed with the help of (A15)
2i0(70) _ a2 (1) ) . . .
j ﬂezicp(fl) 1 1 _ & rme Equation(A15) formally contains the diverger function of
T To—T1 T1— T2 To— T2 zero argument. This part of the answer gives the action of the

noninstanton configuratio =®,=const and thus drops
from the differenceSy=S ®(7)]— F P,] which coincides
(A10)  with Eg. (50) obtained in the frequency domain.

— me? P70 §( 70— 1),
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