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Weak charge quantization on a superconducting island
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We consider Coulomb blockade on a superconductive quantum dot strongly coupled to a lead through a
tunneling barrier and/or normal diffusive metal. Andreev transport of the correlated pairs leads to quantum
fluctuations of the charge on the dot. These fluctuations result in exponential renormalization of the effective
charging energy. We employ two complimentary ways to approach the problem: the instanton and the func-
tional renormalization group treatment of the nonlinears model. We show that these two different methods
produce identical results. We also derive the charging energy renormalization in terms of the arbitrary trans-
mission matrix of the multichannel interface.
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I. INTRODUCTION

Physics of interacting electronic systems in the prese
of disorder has been a subject of an intense study alread
a few decades.1 Various theoretical approaches have be
developed for the description of both metallic and insula
phases. The nonlinears model (NLsM) in the replica2,3 or
dynamic4,5 ~Keldysh! formulation has proven to be the mo
powerful tool to deal with the weakly disordered~metallic!
phase. It was shown that both versions of thes model may
effectively treat the perturbation theory as well as the ren
malization group~RG! formalism. Unlike the noninteracting
models, where a whole spectrum of nonperturbative resul
available,6 there was relatively little progress in the develo
ment of nonperturbative solutions of the interacting NLsM.
Our goal is to take a step in this direction, using the Coulo
blockade~CB! on a superconductive~SC! quantum dot as a
prototypical example.

The Coulomb blockade on a quantum dot coupled t
certain number of leads proved to be an extremely rich
fascinating phenomena both theoretically and experiment
~see Refs. 7 and 8 for review!. From a theoretical point o
view it provides a model, where the Coulomb interactio
being spatially localized, may be treated in a nonperturba
way. The interactions strongly affect charge~and spin! fluc-
tuations between the dot and the leads, which manifest
the particuliar transport and thermodynamic behavior of
coupled dot-lead system. In the case of the practically
lated dot, such that the dimensionless conductance@mea-
sured in units ofGQ[e2/(2p\)# of the dot-lead interface is
small (G!1), the fluctuations usually may be taken in
account perturbatively.~The notable exceptions are provide
by the vicinity of the charge degeneracy point and by
Kondo effect on the dot.8! Here we concentrate on the opp
site scenario of the dot strongly connected to the leadsG
.1). In this case the Coulomb blockade is expected to
suppressed by the charge fluctuations and the overall e
of interactions on a single dot is expected to be weak. It
however, a challenging theoretical problem, lacking an ob
ous small parameter, to understand the remnants of the
on a strongly connected dot. More importantly the weak
may prove to be a strong phenomenon in granulated syst
0163-1829/2002/66~5!/054502~16!/$20.00 66 0545
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with many ~superconductive! dots incorporated in the con
ducting matrix.

For the normal dot the weak CB effect was relatively w
understood from various points of view. Matveev9 gave a
complete picture of the phenomena for the case of one or
conducting channels connecting the dot and the leads.
the multichannel system the CB suppression was calcul
with exponential accuracy employing a RG technique,10,11

instanton calculus,12–15 and bosonization.8 The factor sup-
pressing the thermodynamic CB oscillations was formula
by Nazarov14 in terms of transmission coefficients,Ta , of
the dot-lead interface as)a(12Ta)1/2, wherea51, . . . ,N
and N is the number ofspinlesschannels. The remarkabl
feature of this result is that the essentially many-body p
nomena may be described via the single-particle~noninter-
acting! scattering matrix only. Yet the knowledge of the in
terface conductanceG5(aTa alone is not sufficient to
describe the CB oscillations. For example, in a dot coup
to a lead through the tunneling barrier withTa!1, one ob-
tains for the CB suppression factor exp$2GT/2%. Another
important case of a dot-lead interface is a coupling via
piece of diffusive metal. Employing the Dorokhov statistic
distribution16 of the transmission coefficientsP(T)
5GD /(2TA12T), whereGD is the conductance of the dif
fusive area, one obtains for the typical CB suppression fa
exp$2p2GD/8%. Since the result is exponentially sensitiv
the difference between, e.g.,G/2 andp2G/8 may be actually
enormous.

The superconductive dot in contact with normal leads
even more challenging system. We consider the low temp
turesT!D, whereD is the SC gap, and therefore only ve
few ~if at all! quasiparticle excitations are allowed to leave
enter the superconductor. The dominant mechanism of
charge transfer through the interface is thus the Andr
transport of the correlated pairs. The Andreev transmiss
of a given channel is known17,18to beTa5Ta

2/(22Ta)2. For
the tunneling barrier setup (Ta!1) this leads to an overal
Andreev conductance that scales asGA;GT

2/N ~pair tunnel-
ing probability!. In most cases this is a very small numb
The presence of the diffusive normal metal adjacent to
tunneling barrier increases the Andreev conductance toGA

;GT
2/GD ~or, in the caseGT.GD , to GA;GD!. The physi-
©2002 The American Physical Society02-1
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cal reason for this phenomenon is multiple attempts of
Andreev transmission due to the coherent backscatterin
the normal impurities. The natural question is whether it isG
or GA ~or may be none of them! that determines the ampli
tude of the CB oscillations. In caseGA is the relevant quan
tity, one may wonder whether the coherent backscatte
enhancement should be taken into account. The answer
not immediately obvious, since while the SC strongly pref
the pair transport, the Coulomb energy of the dot makes
entrance of two charges at once energetically costly.
interactions of the dot may also provide a dephasing mec
nism that ruins coherent back-scattering.

In this paper we derive the thermodynamic characteris
of the strongly connected superconducting quantum dot.
major characteristic that determines the amplitude and
temperature dependence of the weak Coulomb blockad
the renormalized charging energyẼC . For the superconduct
ing dot with the bare charging energyEC it turns out to be

ẼC5EC

GA
2

2p2 )
a

~12Ta!1/2, ~1!

whereGA54(aTa is the Andreev conductance of the do
lead interface. This expression provides a remarkable a
ogy between the normal and superconducting setups. It
shows that qualitatively it is indeedGA ~including diffusive
enhancement! that determines the CB amplitude. Quantit
tively, however, the renormalized charging energy canno
expressed in terms ofGA only and requires more detaile
knowledge of the interface structure. We give a detai
quantitative result for an interface made of the tunneling b
rier attached to the diffusive metal.

The other interesting phenomena caused by supercon
tivity is the parity effect.19,20At very small temperatures pa
tunneling is the dominant mechanism and the period~in the
gate voltage! of the CB oscillations is twice larger than th
in the normal dot. For a closed dot the parity phenomeno
destroyed by the entropic effects at moderately small te
peraturesT* 5D/ ln(D/d)!D, where d is the mean single-
particle level spacing on the dot.20 The physical reason fo
this temperature to be much less thanD is that it is enough to
have a single excited quasiparticle to destroy the parity
fect. At larger temperatures the system exhibits the norm
state oscillation period. We show that for an open dot
transition temperature between the normal and doubled
riod is somewhat larger than that for a closed dot and
given byT†5D/ ln(D/GAd), providedGAd,D. For ẼC!T†

we predict a sharp transition atT'T†, characterized by the
sudden change of the CB oscillation period, drop of the
cillation amplitude, and onset of the strong temperature
pendence.

Technically we treat the problem from two seemingly d
tinct perspectives. First we look for the spatially depend
instanton solution of the interacting NLsM on a SC dot in
contact with the normal diffusive region. The finite action
such an instanton configuration results in the exponen
suppression of the CB amplitude. Alternatively we can tr
the problem employing the functional RG technique. T
latter approach encodes the entire dot-lead interface in
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~infinite! set of coefficients, whose values are subseque
renormalized by the quantum fluctuations of the phase on
dot. Renormalization is terminated at the cutoff energy sc
where the conductance reaches unity. The renormalized~ex-
ponentially small! cutoff energy is the effective charging en
ergy ẼC , which dictates the amplitude of the CB oscilla
tions. One of the conclusions of the present paper is
these two approaches lead to the identical results.

The paper is organized as follows: in Sec. II we descr
the setup and formulate the appropriate action in interac
NLsM language. Section III is devoted to the instant
treatment of the problem in the real space. In Sec. IV
derive the proximity action functional and obtain the C
amplitude for an arbitrary set of transmission eigenvalu
~using the instanton approach! at moderately low tempera
turesẼC!T!EC . Then in Sec. V the RG approach is em
ployed to treat the CB in the same temperature range.
demonstrated that the results coincide with those obtaine
instanton techniques. Finally in Sec. VI we discuss the ph
cal results and their possible experimental signatures.
Appendix contains a derivation of the instanton action sta
ing from the real-time Keldysh functional technique.

II. PROBLEM SETUP AND ACTION

We consider a large diffusive~or chaotic! SC dot. The
mean single-particle level spacing of the dot,d, is supposed
to be the smallest energy scale in the problem. The SC
D, on the other hand, is the largest scale. The electrons
the dot interact via the capacitive interaction of the form

H int5EC~N̂2q!2, ~2!

whereN̂ is the electron number operator andq is the rescaled
dimensionless gate voltage potential. The charging ene
EC5e2/(2C), is assumed to satisfy the inequalitiesd,EC
,D.

The dot is separated from the normal diffusive metal b
tunneling barrier with conductanceGT ~see Fig. 1!. The

FIG. 1. ~a! Schematic view of a SC dot connected to a bulk le
through a tunnel barrier with the conductanceGT and a piece of
diffusive metal with conductanceGD . The charging energyEC

controls the coupling between the dot and the gate.~b! A possible
2D realization.
2-2
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piece of the quasi-one-dimensional or two-dimensional m
having sizeL and conductanceGD is in turn connected to a
clean bulk three dimensional~3D! lead. For reasons ex
plained later we shall assume that the Thouless energy o
diffusive region,ETh5D/L2, whereD is the diffusion coef-
ficient, is larger than the charging energy of the dot,ETh

.EC . The opposite limiting case requires a separate tr
ment and will be presented elsewhere.

We shall be interested in those thermodynamic charac
istics of the dot, that depend in an oscillatory way on the g
voltage potential,q. Specifically, we look for the free energ
F(q)52T ln Z(q), where Z(q) is the partition function.
Both of these quantities depend on a particular realizatio
disorder in the diffusive region and inside the dot. We sh
therefore look for a disorder-averaged quantity such
^F(q)&. For an open dotF(q) is an oscillatory function, with
a phase sensitive to a disorder realization. It is therefore c
venient sometimes to calculate also the correlation func
^F(q)F(q8)&.15 The latter carries information about the typ
cal F(q), rather than the average one~which may spuriously
vanish due to phase randomness!.

Disorder averaging may be performed in two ways, eit
by introducing p replicas of the system2,3 and sendingp
→0 at the end, or by dealing with the dynamical Keldy
formulation.4,5 We shall employ both of these approaches
demonstrate that they are consistent and interchangeab
the replica formalism, the NLsM is formulated in terms of
the matrix field theory of the matrix fieldQi j

ab(r ,t,t8),
wherea,b51,2, . . . ,2p are the replica indexes@one needs
2p replicas to describe the correlation functio
^Zp(q)Zp(q8)&# and i , j 51,2 are Gorkov-Nambu indexes
The correlation function of the free energies is given
^F(q)F(q8)&5 limp→0p22@^Zp(q)Zp(q8)&21#. The Q ma-
trix obeys the constraintQ251 and the fermionic antiperi
odic boundary condition in both of its imaginary time arg
mentst,t8P@0,b#. The coordinater runs over the volume
of the SC dot and the normal diffusive region. The matrixQ
field describes the dynamics of the electrons; it is couple
a scalar bosonic vector fieldFa(t) that originates from the
Coulomb interactions on the dot. Since we restrict oursel
by the simplest capacitive interaction, Eq.~2!, the field
Fa(t) is space independent throughout the dot and vanis
outside the dot. As a result, only spatially independent„q
50… components of the superconductiveQ matrix of the dot
appear to be coupled to the Coulomb fieldF. Therefore we
assume that theQ matrix is spatially constant inside the do
while it may have a nontrivial spatial structure inside t
normal diffusive region. The effective action for our geom
etry contains three terms,

S5Sdot1ST1SD , ~3!

whereSdot andSD are the effective actions of the isolated S
dot and normal diffusive region correspondingly, whileST is
the tunneling action that provides coupling between the t
We shall examine these three contributions separately.
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A. Action of the dot

According to our model the dot is the only region whe
electrons interact via the Coulomb interaction, Eq.~2!. As a
result, the dot’s action contains the two coupled field
Fa(t) and QS

ab(t,t8). The first one originates from the
Hubbard-Stratonovich decoupling of the Coulomb term21

while the latter is the result of disorder averaging and in
gration of the fermionic degrees of freedom on the dot.2 Both
of these fields are spatially independent, reflecting the
that the Thouless energy of the dot is assumed to be la
The action takes the now standard form:

Sdot@QS ,F#5 (
a51

2p E
0

b

dtS ~]tFa!2

4Ec
2 iqa]tFaD

2
p

d
Tr$~s3]t2 i ]tF1D̂ !QS%. ~4!

Here the replica vector of gate voltages,qa, is defined in
such a way thatqa5q for aP@1,p# while qa5q8 for a

P@p11,2p#. The SC order parameterD̂5(Das1

2Da* s2)dab is the same for all replicas and is written as
matrix in the Gorkov-Nambu space, wheres65(s1
6 is2)/2. Notice that the gate voltage dependence of
partition function originates entirely from exp$ip(aq

aWa%,
where pWa[*dt]tFa(t)5Fa(b)2Fa(0) is the zeroth
Matsubara component of the]tFa(t) field.

Since all the energy scales we consider are larger thad,
one may evaluate the second term in the dot’s action~4! in
the saddle point approximation over the fieldQS . In so do-
ing, one disregards the mesoscopic conductance fluctua
of the dot-lead interface.8 The saddle point value of theQS
field is given by the Gorkov Green function gauged by t
phaseF(t):

QS
ab~t,t8!5eis3Fa(t)LS

ab~t,t8!e2 is3Fb(t8). ~5!

The Gorkov Green function,LS , has a standard form, whic
is more familiar in the Matsubara basis~we assume the phas
of the SC dot without the Coulomb interactions to be zer!

LS
ab~n,m!5dabdnmS cosun sinun

sinun 2cosun
D , ~6!

where

cosun[
en

Aen
21uDu2

, sinun[
uDu

Aen
21uDu2

, ~7!

and en5pT(2n11) is the fermionic Matsubara frequenc
The phase rotation~5! preserves the fermionic antiperiod
boundary conditions if allWa are even integers. At small
temperatures,T!D, however, one has cosun'0 and sinun
'1 and therefore the Gorkov matrix,LS , is ~almost! off-
diagonal in the Nambu space and local in time. As a res
only 2F(t) participates in the phase rotation@Eq. ~5!#.
Therefore theodd–integerWa preserve the fermionic bound
ary conditions, as well. The odd–integerWa’s result in the
doubling of the period of theF(q) function with respect to
2-3
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the normal case. This reflects the fact that pair transfer is
dominant mechanism of the charge exchange.

In fact, one has to be more careful and recall that, acco
ing to Eq.~4!, one has to perform integrations over all Ma
subara components of]tFa(t) fields.21 All nonzero Matsub-
ara components may be eliminated by the gau
transformation, Eq.~5!. As a result, they have no effect o
the thermodynamics of anisolated dot at all ~they are of
major importance, of course, once the dot is coupled to
leads!. The remaining~usual! integral over the zeroth Mat
subara component,Wa , must be performed explicitly. To thi
end one notices thatpTWa enters the action as an imagina
chemical potential in the replicaa. The ~replicated! free en-
ergy of an isolated dot is thus a periodic function of each
Wa with period 2~indeed the chemical potential always e
ters as exp$mN̂/T%, since the number operator,N̂, has only
integer eigenvalues—the periodicity is apparent!. The free
energy possesses deep minima at even-integer values oWa
with quadratic behavior in their vicinity, Fdot(W)
'p2T2W2/(2d), where d5(]2Fdot/]m2)21 is the mean
level spacing of the dot. For a sufficiently large dot, whe
d,T, the integrals overWa may be performed in the sadd
point approximation, which results in the even-integer qu
tization of Wa . In a SC dot there are additional minima
odd-integer values ofWa . Consequently the integration ove
Wa is substituted by summation over all integers. AtT.0
the additional minima of the free energy at odd-integerWa’s
are not as deep as at the even integers, reflecting the fac
the addition of an odd number of electrons is possible
creating a quasiparticle. We shall evaluate now the ac
cost of the odd minima with respect to the even ones.

For even values, sayWa50, one can substitute the sadd
point solution, Eq.~5!, into the action, Eq.~4!, and obtain
@we disregard for a moment the first term in Eq.~4!#

Sdot~Wa50!52
p

d
Tr$~s3]t1D̂ !LS

aa%

52
2p

d (
n

Aen
21uDu2. ~8!

This sum is divergent. However, it is only the difference
the action between different replicas that has a physical
nificance. The latter quantity is convergent as we shall
momentarily. For the odd integers, sayWb51, there is an
imaginary componentipT of the chemical potential in Eq
~4!. It may be eliminated by gauge transformation, whi
converts the antiperiodic boundary conditions for the ferm
ons into the periodic ones. As a result, one obtains the s
expression as Eq.~8! with the fermionic Matsubara fre
quencyen5pT(2n11) substituted by the bosonic onevn
52pTn:

Sdot~Wb51!52
2p

d (
n

Avn
21uDu2. ~9!

Employing the Poisson summation formula, one obtains
the difference
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5
8uDu

d (
l 50

`
1

2l 11
K1S ~2l 11!

uDu
T D

'
4A2puDuT

d
e2uDu/T, ~10!

where the last equality assumesT!D. In the opposite limit
of the normal dot,T.D, one findsA(T)'p2T/d, reflecting
the fact that in a normal dot the odd-integer minima a
absent. Although these minima persist up toT'D, their con-
tribution is exponentially suppressed atT.T* , whereT* is
determined from the conditionSdot(1)2Sdot(0)'1:19,20

T* '
uDu

lnuDu/d
!uDu. ~11!

As a result, there is an important temperature depende
associated with the odd-integer winding numbers at the s
T'T* !uDu. We shall see below that for the dot strong
coupled to the leads, the corresponding temperature sca
slightly different.

We summarize now our discussion of the action of a la
SC dot with the Coulomb interaction atT!D. The scalar
potential in each replica obeys the boundary condition

Fa~b!2Fa~0!5pWa , ~12!

whereWa is an integer winding number. The correspondi
saddle point value of theQS-matrix field is given by Eq.~5!.
The action of the dot takes the form

Sdot@F#5 (
a51

2p F2 ipqaWa

1A~T!dWa mod 2,11E
0

b

dt
~]tFa!2

4EC
G , ~13!

whereA(T) is given by Eq.~10!.

B. Tunneling barrier and diffusive region action

The tunneling action couples theQS field on the dot with
theQ(r50) field at the pointr50 adjacent to the tunneling
barrier from the normal metal side. It has the standard fo6

ST52
GT

8
Tr$QSQ~0!%, ~14!

whereGT is the tunneling conductance.
The action of the normal diffusive region also has t

standard form2,6

SD5
pn

4 E
0

L

drDTr$@¹Q~r !#2%, ~15!

whereD is the diffusion constant andn the density of states
~per spin! of the normal region. The total conductance of t
normal region is given byGD54pnD/L for the quasi-1D
geometry of the normal region andGD58p2nD/ ln(L/d) for
the 2D geometry. HereL is the length~radius! of the 1D~2D!
region andd is the radius of the SC dot. We have omitted t
2-4
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frequency termnTr$eQ% on the right-hand side~r.h.s.! of Eq.
~15!, because of the assumption thatETh.EC.T. At the
point where the diffusive region is attached to the norm
bulk lead one has to impose the boundary condition

Q~r 5L !5LN , ~16!

where LN
ab(n,m)5s3dabdnmsign(en) is the appropriateQ

matrix of the normal bulk lead.
Alternatively, one may imagine integrating out theQ(r )

field of the normal region, subject to the boundary condit
@Eq. ~16!# and weighted by the actionST1SD . This proce-
dure ~we shall describe it in detail in Sec. IV! leads to the
effective actionSTD of the interface plus diffusive region
written in terms ofQS andLN only. If all the relevant energy
scales are less than the Thouless energy of the diffu
metal, the general form such action may take is11

STD52
GD

8 (
l 51

`

g lTr$~QSLN! l%, ~17!

whereg l are coefficients that depend on the details of
interface~in our case the ratioGT /GD). The largeness of the
Thouless energy is necessary to disregard the retardatio
fects and thus possible time non local coupling betweenQS
and LN . Under such conditions, the proximity action, E
~17!, is completely equivalent to those given by Eqs.~14!
and ~15! upon the proper choice of the set,g l .11

III. THE INSTANTON APPROACH

We are interested in the limit of strong coupling betwe
the dot and the leads, meaningGD ,GT.1 ~the weak cou-
pling limit may be treated in the spirit of Refs. 22–24!. For
GD@1 the fluctuations of theQ field around its optimal
value are suppressed. One may employ therefore the sta
ary phase treatment of the NLsM for the dot-lead
interface.15 Taking the variation of the action in Eqs.~14!,
and ~15! under the conditionQ251 one obtains the Usade
equation

2pn¹~DQ¹Q!2d~r !GT@Q,QS#50. ~18!

This equation is to be solved for a fixedQS5QS@F# given
by Eq.~5! and with the boundary conditions in Eq.~16!. The
solutionQ5Q@F# after being substituted back into the a
tion in Eqs.~14! and ~15! results in the semiclassical pha
action S@F#. The later may then be investigated using t
instanton approach applied to theF~t! field.

A. Zero winding number

As an initial exercise, consider the zero winding numb
sector of the theory,Wa50 for a51, . . . ,2p. Obviously it
does not produce an oscillatory dependence ofF(q) @cf. Eq.
~13!# and therefore serves only an axillary purpose. T
lowest-energy configuration in zero winding number sec
is Fa(t)50 and thereforeQS on the dot is simply given by
the BCSLS , Eq. ~6!. Solution of the Usadel equation~18!
may be written as
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Q~r !5LN exp$ iu~r !u ^ s2%, ~19!

where u(r ) is the normalized ‘‘voltage drop’’ inside the
normal region: u(r )5(L2r )/L in 1D and u(r )
5 ln(L/r)/ln(L/d) in two dimensions. The absolute value
the voltage drop,u, is coordinate-independent diagonal~in
replica and Matsubara space! matrix. It has a physical mean
ing of the SC rotation angle of the normal metal in dire
proximity to the dot. One may substitute the solution ba
into the action to obtain~for a single replica and Matsubar
component!

S05
1

8
@GDu222GT cos~un2u!#, ~20!

where the subscript 0 stresses that we work with zero wi
ing numbers andun is defined by Eq.~7!. For small energy,
en!D, one hasun'p/2 and therefore the correspondin
action takes the form

S05
GD

8
@u222t sinu#, ~21!

where t[GT /GD . This action is minimized whenu5u(t)
satisfies the equation

u5t cosu. ~22!

The lowest-energy solution of this equation smoothly int
polates betweenu50 for t!1 andu5p/2 for t@1. Finally,
this solution has to be substituted into Eq.~21! to find the
action cost,S05S0(t), for the zero winding number configu
ration.

B. Nonzero winding numbers

To calculate the oscillatory component of the free ener
F(q), one has to consider theF-field configurations with
nonzero winding numbers, cf. Eq.~13!. Consider, thus, the
simplest even configuration of winding numbers withW1
52 and all othersWa50 in the remaining 2p21 replica.
Within exponential accuracy it is sufficient to consider t
‘‘straight’’ windings: F1(t)52pTt. The saddle point of the
SC Q field on the dot is given by Eq.~5! and takes the form

QS
11~n,m!5S dn,mcosum21 dn,m12sinum11

dn,m22sinum21 2dn,mcosum11
D , ~23!

where the 232 structure is the Nambu space. In all oth
replica except ofa51 theQS matrix has the form~6!. One
may check that the Usadel equation is solved by exactly
sameO(2) rotation as in theW50 case, Eq.~19!, performed
in each of the following 232 Nambu blocks:

S Q11~n11,n11! Q12~n11,n21!

Q21~n21,n11! Q22~n21,n21!
D

5S cosun sinun

sinun 2cosun
D ; ~24!

the Nambu indexes are explicitly stated on the l.h.s. In t
232 blockLN5s3 and therefore the matrix from the r.h.s o
2-5
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Eq. ~24! may indeed be rotated intoLN as in Eq.~19!. The
only exception are the two lowest Matsubara componenn
50 andn51, which form 434 blocks of the form

S Q11~1,1! Q12~1,21!

Q11~2,2! Q12~2,0!

Q21~21,1! Q22~21,21!

Q21~0,2! Q22~0,0!

D
5S cosu0 sinu0

cosu1 sinu1

sinu0 2cosu0

sinu1 2cosu1

D . ~25!

The corresponding 434 block of theLN matrix on the nor-
mal lead is the unit matrix. Obviously the unit matrix cann
be unitary rotated into the block equation~25! and therefore
solution of the Usadel equation in this block is impossib
The difficulty originates from the fact that, due to the rando
phase of the CB oscillations, the average free ene
^F(q)&, is not an oscillatory function. We need therefore
consider winding number configuration of the formW152
andWp11522, while all otherWa50. The contribution to
the correlation function from such a configuration is prop
tional to exp$2pi(q2q8)%, that is, the lowest normal harmon
of the correlation function̂F(q)F(q8)&. The ‘‘dangerous’’
434 block in the (p11)st replica is given by

S Q11~21,21! Q12~21,1!

Q11~0,0! Q12~0,2!

Q21~1,21! Q22~1,1!

Q21~2,0! Q22~2,2!

D
5S cosu0 sinu0

cosu1 sinu1

sinu0 2cosu0

sinu1 2cosu1

D , ~26!

while the corresponding 434 block of theLN matrix is mi-
nus one times the unit matrix. Here as well the unitary ro
tion between the pointsr 5L and r 50 is impossible. How-
ever, if one combinesa51 anda5p11 replica and allows
rotation between them, then the unitary rotation may
found.15 Indeed, combining both ‘‘dangerous’’ blocks int
the single 838 block@i.e., combine Eq.~25! with Eq. ~26! on
the dot and unit matrix with the minus unit matrix on th
normal lead#, one readily see that they may be unitary co
nected~since they possess the same set of eigenvalues!.

The calculations are simplified in the low-temperatu
case,T!D, where un'p/2. In this case the 838 block
takes the form

QS5S 1 0

0 1D ^ S s1 0

0 s1
D ~27!

on the dot and
05450
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LN5S 1 0

0 1D ^ S s0 0

0 2s0
D ~28!

on the normal lead (s0 is the unit matrix in the Nambu
space!. Here the outer 232 unit matrix represents the spac
of n50 and n51 Matsubara components, while the inn
one represents the replica space ofa51 anda5p11 ~Pauli
matrices act in the Nambu space!. We seek thus for the so
lution of the Usadel equation in the 838 subspace, having in
mind that the solution for all other Matsubara compone
and replica is exactly the same as inW50 sector, Eqs.~19!–
~22!. The general solution forrÞ0 may be written as

Q~r !5LN expH iu~r !S 0 B

B† 0 D J , ~29!

where theu(r ) function was defined after Eq.~19! andB is a
coordinate-independent Nambu matrix. Employing the s
gular value decomposition, it may be written as

B5U21S Q1 0

0 Q2
DV, ~30!

where U5eiu3s3eiu2s2eiu1s1 and V5eiv3s3eiv2s2eiv1s1 are
SU~2! matrices andQ1<Q2 are real singular values. Subst
tuting the solution back into the action, one obtains~for each
of the two involved Matsubara frequencies!

2S625
1

4
@GD~Q1

21Q2
2!2GT~sin 2u22sin 2v2!

3~cosQ12cosQ2!#, ~31!

where the subscript62 labels the corresponding windin
numbers and the coefficient two on the l.h.s. reminds t
two replica were involved. The next step is to minimize t
action overQ1,2, u2 andv2 angles. Three of the four equa
tions for the minima have only trivial ~parameter-
independent! solutions: Q150,u252p/4, and v25p/4.
The action in terms of the single nontrivial angleQ2 finally
takes the form

2S625
GD

4
@Q2

212t~cosQ221!#, ~32!

where, as above,t[GT /GD . The corresponding saddl
point equation forQ25Q2(t) is

Q25t sinQ2 . ~33!

For t<1 the only solution of this equation isQ250, while
for t>1 the angleQ2(t) interpolates between zero~for t
51) andp ~for t@1).

C. CB suppression

We are now on the position to discuss the suppressio
the CB. Consider first the component of the correlation fu
tion ^Zp(q)Zp(q8)&, which is proportional to cos 2p(q
2q8). As was explained above the relevant field configu
tions are those having a single replica withWa562, where
aP@1,p# and a single replica withWa572, whereaP@p
2-6



-

e

io

e
on
u

h-

a

ul

ng
an
s

h
o
ge

d
ca

on
y

e

pl
c
r
-

7;

q.

i-

bar-
he

ds
he

w
the

le

e
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11,2p#. The corresponding action is given by 4S[2S62

1(2p22)2S0, ~hereS0 is multiplied by the number of rep
licas with zero winding number 2p22, and by factor of two,
because two Matsubara components are different betw
W562 andW50). Taking the replica limitp→0 and em-
ploying Eqs.~21! and ~32!, one finds

2S~ t !5S6222S05
GD

8
$Q2

2~ t !22u2~ t !

12t@cosQ2~ t !12 sinu~ t !21#%, ~34!

whereu(t) andQ2(t) are the solutions of Eqs.~22! and~33!,
respectively. As a result, the contribution to the correlat
function with the unit period has the form
exp$24S%cos 2p(q2q8), where the factor of 4 denotes th
fact that two replica are involved in the correlation functi
and the winding number is two. We shall discuss this res
in more detail in Sec. VI, after deriving it using other met
ods. For the later reference we need to calculatet2] t(2S/t);
employing the saddle point equations~22! and ~33!, we ob-
tain

t2
]

]t S 2S
t D52

GD

8
@Q2

222u2#. ~35!

As was explained in Sec. II, the parity effects sets in
small temperatureT,T* !D. Technically it manifests itself
in the appearance of the odd winding numbers. The calc
tions for the field configuration withW151, and Wp11
521 are exactly parallel to the one for the even windi
numbers. The only difference is that there is the single ‘‘d
gerous’’ Matsubara frequency,n50; consequently there i
no outer 232 Matsubara structure as in Eqs.~27! and ~28!
~the replica and Nambu structures are exactly the same!. As a
result, the action is exactly twice smaller than that for t
oscillations with unit period. We thus obtain for the comp
nent of the correlation function with doubled gate volta
period exp$22@S1A(T)#%cosp(q2q8), where the factor of
2 in the exponent originates from the two replicas involve

Finally, let us discuss the technicalities of the repli
limit, p→0.15 There are altogetherp2 distinct configurations
of the winding numbers that contribute to the correlati
function ^Zp(q)Zp(q8)& with the same oscillatory factor, sa
exp$2pi(q2q8)%. They correspond to thep possible choices
for Wa52 and p independent possible choices ofWa
522. There is thus the combinatorial factor ofp2 in
^Zp(q)Zp(q8)& that is cancelled against the sam
factor in the denominator for ^F(q)F(q8)&
5 limp→0p22@^Zp(q)Zp(q8)21&#.

IV. PROXIMITY ACTION

In this section we discuss the derivation and simple ap
cations of the proximity action approach to treat the interfa
between the SC dot and normal lead. This method was
cently suggested11,25 for the analysis of superconductive
normal metal transition in a 2D proximity-coupled array.26,27

Notice that our definition of the running parameterz and
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charges$g l% differ from those used in Refs. 11, 25, and 2
see the Appendix for details.

A. Derivation of the proximity action

Our immediate goal is to derive the proximity action, E
~17!, starting from Eqs.~14! and ~15!. To this end, let us
imagine adding the diffusive metal step by step with infin
tesimal shells having conductancedG@GD.1. At some in-
termediate step of this procedure one has the tunneling
rier with the part of the normal metal incorporated into t
set of coefficientsg l(z). Herez[GD /GD(z)P@0,1# is the
running parameter such thatg l(0)5d l ,1GT /GD , and S(0)
5ST is the bare tunneling barrier action; whileg l(1)5g l
and S(1)5STD is the full proximity action of the barrier
‘‘dressed’’ with the diffusive metal. At each step one ad
another thin shell of the diffusive metal. The action of t
entire system takes the form

S~z1dz!52
GD

8 (
l 51

`

g l~z!Tr$~QSQ! l%

1
dG

16
Tr$~Q2LN!2%, ~36!

whereQ is the field right on the boundary between the ne
shell and the already integrated region. The action of
newly added shell has the simple form, (dG/16)Tr(Q
2LN)2, sincedG@GD.1 and therefore the matrixQ has to
be rather close toLN @in the leading order in (dG)21 one
may disregard all higher-order terms (Q2LN) l with l .2#.
The next step is to integrate out theQ field and obtain the
new setg l(z1dz). We perform this procedure in the sadd
point approximation. Taking variation of the action, Eq.~36!,
under the conditionQ251 one finds the saddle point~Us-
adel! equation

GD(
l 51

`

lg l~z!@~QSQ! l2~QQS! l #2dG@QLN2LNQ#50.

~37!

In the leading order inGD /dG!1 one obtains for the saddl
point solution

Q5LN1
GD

2dG (
l 51

`

lg l@~QSLN! lLN2LN~QSLN! l #.

~38!

Setting it back into the action, one finally finds

S~z1dz!52
GD

8 F(
l 51

`

g lTr$~QSLN! l%1
dz

2 (
l ,k51

`

lkg lgk

3Tr$~QSLN! l 1k2~QSLN! u l 2ku%G , ~39!

where we employed the fact thatdG5GD /dz. One ends up
with the following evolution equations forg l(z):
2-7
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dg l

dz
5

1

2 (
k51

`

k~ l 1k!gkg l 1k2
1

4 (
k51

l 21

k~ l 2k!gkg l 2k .

~40!

To solve this set of equations it is convenient to define
functionu(z,Q)[( l 51

` lg l(z)sin(lQ). With it’s help Eq.~40!
takes the form

uz52uuQ , ~41!

supplemented with the initial conditionu(0,Q)5t sinQ,
where, as before,t[GT /GD . Employing the method of
characteristics, one may write the solution of the latter pr
lem in the implicit form:

u~z,Q!5t sin@Q2zu~z,Q!#. ~42!

As a result, the functionu0(Q)[u(1,Q), which haslg l as
its Fourier coefficients, may be found as the solution of
following differential or algebraic equations:

t2
]

]t S u0

t D1u0]Qu050, u0~Q!5tsin@Q2u0~Q!#.

~43!

The last expression solves the problem of writing the act
of the barrier and the diffusive region in the form of Eq.~17!.
Note that to derive this result we have not used a spec
form of QS and LN ~other than the fact thatQS

25LN
2 51).

Therefore the action and the coefficientsg l are equally ap-
plicable to any other setup. The only two conditions th
were employed areGD@1 to disregard localization effect
and perform the saddle point calculations andETh@EC to
disregard the frequency term in the action and justify
structure of Eq.~17!. The conditionETh@EC also allows us
to neglect Cooper-channel interaction in the normal cond
tor, while deriving proximity action~cf. Ref. 11 for the dis-
cussion of general situation!.

For the latter use we defineu5u(t)[u0(p/2) and Q2
5Q2(t)[u0(p). According to Eq.~43!, these two angles
satisfyu5t cosu andQ25t sinQ2, respectively. Comparing
these relations with Eqs.~22! and~33!, we conclude that the
anglesu andQ2 introduced here coincide with the instanto
angles introduced in Sec. III.

B. Physical observables

In this section we repeat briefly the derivation presen
originally in Ref. 11.

1. Normal state conductance

Consider for a moment the dot in the normal state wit
small applied biasV(t)5V cosvmt. The dot’s Green func-
tion takes the formQS5exp$iF(t)%LN(t2t8)exp$2iF(t8)%,
whereF5*dtV(t). Substituting suchQS in the action and
taking the second variation with respect toV(t) at V50,
one finds for the linear normal state conductance

GN5GD(
l 51

`

l 2g l5GD]Qu0~0!. ~44!
05450
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For small Q one hasu0(Q)'Q]Qu0(0); employing Eq.
~43!, one finds]Qu0(0)5t/(11t). As expected, one obtain
the resistance addition rule

GN
215GD

211GT
21 . ~45!

2. Andreev conductance

We shall concentrate now on the temperature regionD
@T@d, where the SCQ matrix may be written in the form
Eq. ~5! with un5p/2, which corresponds to infiniteD @the
leading effect of the finiteD is to renormalizeEC

21→EC
21

1G/2pD ~Refs. 28 and 24!#. In this case theQS matrix is
off-diagonal in the Nambu space and time local. Since
LN matrix is diagonal in the Nambu space, only even pow
of (QSLN) may contribute to the action. As a result, on
finds for the proximity action

~46!

whereG(t2t8)52 iT/sinpT(t2t8) is the Green function
of the normal lead@the Fourier transform ofLN(en) to the
time domain isLN(t,t8)5G(t2t8)s3#. If the external
voltage V(t) is applied to the SC dot, the phase is to
understood asF5*dtV(t). Calculating the second varia
tion of the above action with respect toV(t), one finds for
the linear~Andreev! conductance

GA5GD(
l 51

`

~21! l~2l !2g2l5GD]Qu0~p/2!. ~47!

Employing Eq.~43! for Q'p/2 one finds

GA5
GT sinu

11t sinu
, ~48!

where u5t cosu5u0(p/2). One therefore obtainsGA

5GT
2/GD1O(t) for t!1 andGA5GD1O(1/t) for t@1.

C. Instanton treatment of the proximity action

To calculate the proximity action on the simplest insta
ton trajectory F1(t)5pTtW and Fa(t)50 for a
P@2,2p#, one may employ, e.g., the Matsubara basis~see the
Appendix for calculations in the time domain!. Employing
Eq. ~23! ~modified in the obvious way for arbitraryW), one
finds
2-8
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~QSLN!2l~n,m!

5~21! ldn,mS sgn~en2W!sgn~en! 0

0 sgn~en1W!sgn~en!
D l

;

~49!

in the replicaa51, while (QSLN)2l5(21)ls0 in all other
replica. As a result, for all evenl 52k the action ina51
replica is not different from that in the other 2p21 replica
and therefore does not contribute to the total action in
replica limit p→0. On the other hand, for oddl 52k21,
there areuWu Matsubara components, wherea51 and a
Þ1 replica come with the opposite signs. Employing E
~46!, one finds for action on the instanton trajectory~in the
replica limit!

SW~ t !52uWu
GD

2 (
k51

`

g4k22

52uWu
GD

8 F E
0

p/2

dQu0~Q!2E
p/2

p

dQu0~Q!G , ~50!

where the last equality is a direct consequence of the de
tion u0(Q)5( l 51

` lg lsin(lQ). Employing the differential
equation~43!, one finds

t2
]

]t S S2

t D5
GD

8 F E
0

p/2

dQ]Qu0
22E

p/2

p

dQ]Qu0
2G

5
GD

8
@2u22Q2

2#. ~51!

Comparing with Eq.~35!, we find an exact coincidence o
the real-space result, Eq.~34!, and the proximity action, Eq
~50!, S(t)5S1(t). Notice that, since the~random! diffusive
region was integrated out upon derivation of the proxim
action, the phase of the CB oscillations is not random. I
sense the proximity action represents a typical diffusive
gion ~mesoscopic fluctuations are omitted in the derivat
given above!. One may therefore calculate directly typic
Z(q), without resorting to the correlation function. From th
two smallest winding numbersW51 and W52 one finds
Z(q)'exp$2@S11A(T)#%cospq1exp$2S2%cos 2pq1•••,
in agreement with the result of the previous section.

It is worth mentioning here that the general expression
the instanton action in the case of the normal island, deri
in Ref. 14, may be presented in the form similar to Eqs.~34!
and ~50!:

S W
N 5uWu

GD

4 (
k51

`

g2k215uWu
GD

8 E
0

p

dQu0~Q!

5uWu
GD

16
@Q2

212t~cosQ211!#, ~52!

and only evenWare allowed for the normal case. It is easy
see, using Eq.~33!, that in the entire intervalGD.GT the
value of the actionS 2

N is the same as in the tunneling limi
05450
e

.

i-

a
-

n

r
d

S 2
N5GT/2. As t5GT /GD approaches unity, a kind of phas

transition occurs,29 which reveals itself as a nonanalytic b
havior of S 2

N(t) at t51.

D. Landauer approach

Employing Nazarov’s techniques,29 one may show that
the functionu0(Q) is directly related to the generating func
tion of the transmission coefficients

1

2
GDu0~Q!5F~Q!sinQ[ (

a51

N
Ta sinQ

12Ta sin2~Q/2!
,

~53!

whereTa are eigenvalues of theN3N matrix t†t describing
transmission between the dot and the lead. Factor 1/2 on
l.h.s. takes into account thatGD is defined for the two spin
components. Performing the Fourier transform one finds

1

2
GDg l5

4~21! l 11

l (
a51

N

e22ma l , ~54!

whereTa5cosh22ma . As a result, the proximity action take
the compact form:

STD52 (
a51

N

Tr ln~11e22maQSLN!

52
1

2 (
a51

N

Tr lnS 12
Ta

4
~QS2LN!2D . ~55!

In the last expression we have omitted a constant which g
to zero in the replica limit. Exactly the same interface acti
is known in the supersymmetric formalism30,6 ~notice that
here we deal with spin 1/2 electrons!. One may calculate
now the action on the instanton trajectory to find the ren
malized charging energy. Employing Eq.~54! and recalling
that S152(GD/2)(kg4k22, one finds

S152
1

2 (
a51

N

lnS 12
Ta

2

~22Ta!2D . ~56!

This expression is to be compared with the one for the A
dreev conductance obtained from Eqs.~47! and ~54!:17,18

GA54 (
a51

N Ta
2

~22Ta!2
~57!

~cf. with the normal conductanceGN5GD( l l
2g l52(aTa ,

where 2 stays for spin!. Factor 4 on the r.h.s. of Eq.~57!
stems from the fact that Andreev particles carry chargee
and no spin. One may thus identify the combinationTa

5Ta
2/(22Ta)2 as the Andreev conductance in channela.

The renormalization of the charging energy is therefo
given by

e2S15 )
a51

N

~12Ta!1/2. ~58!
2-9
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This may be compared with the corresponding factor for
normalspinlessparticles:14 )a(12Ta)1/2. Indeed, in our no-
tations the normal instanton action isS 2

N5(GD/2)( lg2l 21

52(aln(12Ta); for spinless particles one has ex
$2S 2

N/2% for the CB suppression. There is thus a perf
analogy between Andreev and normal spinless charge
tuations mechanisms, provided that the normal transmis
coefficients,Ta , are substituted by the Andreev ones,Ta .

From Eq.~58! one may extract some general results.
the tunneling limit Ta!1 in all channels, one findsS1
5GA/8. In the diffusive metal interface the transmission
genvalues are distributed according to the Dorokh
distribution:16,29 P(T)5GD /(4TA12T) ~for spin 1/2 par-
ticles!. The corresponding distribution for the Andreev tran
missions is given byP(T)5GD /(8TA12T), as a result
GA5GD . For the typical action of the diffusive interface on
finds thereforê S1&5p2GA/32.

E. Fluctuation determinant and summation over many-
instanton configurations

We now expand the action, Eq.~46!, to the second orde
in deviations from the instanton trajectoryFa(t)5pTtWa
1dFa(t), wheredFa(0)5dFa(b). After diagonalization
of the resulting quadratic form one finds the following spe
trum of the small fluctuations:12,13,31

ln
(Wa)

5
p2T

EC
n21

GA

4
~ un2Wau1un1Wau22uWau!, ~59!

wherenP@2`,`#. For T!EC there are 2uWau11 ~almost!
zero modes labeled byn<uWau. One of themn50 is the
trivial shift of Fa(t) by a constant, whereas the remaini
2uWau zero modes are associated with the deformation of
instantons. The general solution of the saddle point equat
~for T!EC) known as the Korshunov instanton32 may be
written as

e2iFa(t)5)
k51

uWau F e2p iTt2zk

12e2p iTtzk*
G sgn(Wa)

, ~60!

wherezk is a set ofuWau complex numbers~instanton coor-
dinates! that parametrize the 2uWau dimensional zero–mode
manifold. The instanton coordinates,zk , are complex num-
bers from inside of the unit circle. One may thus characte
any deviationdFa(t) by 2uWau zero-mode coordinates,zk ,
and remaining transversal modes having nonzero masses
~59!. The Jacobian of such transformation may be found
the standard way33 and is given by

J5
1

uWau!
detI 1

12zlzk*
I , ~61!

where l ,kP@1,uWau#. The fact that the Jacobian vanishes
two of the coordinates coincide signals the repulsive inter
tion between the instantons.

The Gaussian integration over the massive degree
freedom normalized by those in the zero winding num
sector results in
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n51

`

~ln
(0)/p!

)
n5uWau11

`

~ln
(Wa)/p!

5S GA

2p D uWau

expH uWau lnS GAEC

2p2T D J ,

~62!

up to the terms of the orderT/(GAEC)!1. Combining to-
gether all the factors, one finds for the one instanton,Wa
51, trajectory

Z1

Z0
5eipq R

uzu<1

d2z

12uzu2
S GA

2p De2$S12 ln(GAEC/2p2T)%

5eipq
ẼC

2T
ln

EC

T
. ~63!

The cutoff of the logarithmically divergentz integral origi-
nates from the following consideration. In the presence
the charging energy term the Korshunov instantons, Eq.~60!,
are not true zero modes of the action. Thez dependence of
the action brings the factor exp$2(T/2EC)uzu2/(12uzu2)% to
the integral. As a result the effective integration ran
shrinks to uzu2,12T/EC,1. The renormalized charging
energyẼC is defined as

ẼC5
ECGA

2

2p2 e2S1. ~64!

It is also instructive to look at theWa52 contribution to the
partition function

Z2

Z0
5e2ipq

1

2! R R d2z1d2z2

3F 1

~12uzu1
2!~12uzu2

2!
2

1

~12z1z2* !~12z1* z2!
G

3S GA

2p D 2

e2$S222 ln(GAEC/2p2T)%

5
1

2!
e2ipqS ẼC

2T
D 2F ln2

EC

T
2

p2

6 G . ~65!

The leading power of the large logarithm comes from t
diagonal term of the Jacobian, Eq.~61!. This term corre-
sponds to the noninteracting instantons approximati
which is justified therefore by the large parameter ln(EC /T)
@1. Notice that the~repulsive! interaction correction@the
off–diagonal part of the Jacobian, Eq.~61!# comes with ln0

and not ln1, as may be naively expected.
Due to the large logarithmic factor, originating from th

integration over sizes of each individual instanton~i.e., ne-
glecting their interactions!, one may treat positive and nega
tive instantons~anti-instantons! on the equal footing. Strictly
speaking, a combination of instantons and anti-instanton
not a saddle point solution. However, relative weakness
instanton interactions@no log factor in the second term in Eq
~65!# makes it possible to consider an ideal gas of instant
2-10
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and anti-instantons. The contribution to the partition funct
with a given winding numberW is given by all configura-
tions havingm1uWu instantons andm anti-instantons in an
arbitrary order. Taking only the terms with the leading pow
of the logarithms~diagonal term of the Jacobian! one finds13

Z~q!5Z0 (
W52`

`

ep iWq (
m50

`
1

m! ~m1uWu!!

3S ẼC

2T
ln

EC

T
D 2m1uWu

, ~66!

This series may be summed up into an unexpectedly sim
expression:

Z~q!5Z0expH ẼC

T
lnS EC

T D cos~pq!J . ~67!

The simplest way to check it is to expand back Eq.~67! in a
double series in powers ofẼC and eipq. The role of the
anti-instantons, therefore, is to convert cos(Wpq), which
may be expected from the instantons only, into cosW(pq).

Under the conditionẼC<T!EC the interaction between
instantons can be treated perturbatively; for the lowest-o
correction we use the last term in Eq.~65! to find for the
gate-voltage-dependent free energy

F~q!52ẼCF lnS EC

T D cos~pq!

2
p2

24

ẼC

T
cos~2pq!1•••G . ~68!

We retain the second term in Eq.~68! since it will be impor-
tant at temperatures comparable with the parity-effect te
perature T* ; see Sec. VI. It also demonstrates that t
instanton-instanton interaction corrections are small onl
ẼC,T.

V. RG TREATMENT OF THE QUANTUM FLUCTUATIONS

We next approach the problem of the CB from the diffe
ent perspective. Instead of calculating the action on the
stanton field configurations, we shall perform the RG ana
sis of the coefficientsg l upon integrating out fast fluctuation
of F(t). To this end we writeF(t)5Fs(t)1F f(t), where
superscriptss and f denote the slow (vm,V) and fast (vm
.V) component of the field, respectively. The running c
off V runs fromV;GAEC down to the lowest Matsubar
frequencyV;T. We next substitute theF field into the SC
proximity action, Eq.~46!, expand to the second order inF f ,
and integrate out the fast field fluctuations. The bare pro
gator of theF f fields may be read out from the action E
~46!:

^Fa
f ~vm!Fb

f ~2vm!&5
2pdab

uvmuGA~zV!
, ~69!
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whereGA(zV)5GD( l 51
` (21)l(2l )2g2l(zV) is the running

value of the Andreev conductance, andzV[ ln(GAEC)/V.
~Note that this definition ofz differs from that used to derive
the proximity action in Sec. IV.! The further calculation is
essentially similar to that in the Keldysh formalism.27 One
obtains the following set of the evolution equations f
g l(zV):

dg2l

dz
52

8

GA~z! S lg2l12(
k51

`

~21!k~ l 1k!g2l 12kD ,

~70!

where we have omitted the subscriptV. Since only the even
coefficients are involved, it is convenient to define the fun
tion ũ(z,Q)5@u(z,Q)2u(z,p2Q)#/2, which contains
only even harmonics. In terms of this function the RG equ
tions ~70! take the form

ũz52
4

GA~z!
@ ũ~Q!tanQ#Q , ~71!

where the Andreev conductance isGA(z)5GDũQ(z,p/2).
The initial condition for Eq.~71! is ũ(0,Q)5ũ0(Q), with
the u0(Q) function evaluated above. Let us mention f
completeness that in the normal case the corresponding
equation takes the formuz5@2/GN(z)#@u(Q)cot(Q/2)#Q ,
where the running normal conductance according to Eq.~44!
is given byGN(z)5GD( l 51

` l 2g l(z)5GDuQ(z,0).
The key parameter that determines the strength of ph

fluctuations is the Andreev conductanceGA(z). We consider
the large bare value,GA(0)@1. Upon integration over fluc-
tuations ofF(t), the effective value ofGA(z) decreases~the
physical reason of this phenomena is a partial loss of
phase coherence between multiple Andreev reflections!, and
becomes comparable to unity at some time scaleVc

21

5(GAEC)21ezc. At longer times coupling between the do
and the lead is weak; thus the phase fluctuations grow
autocorrelation functionC(t)5^ei (F(t)2F(0))& decays fast.
It is natural to associateVc with an effective Coulomb en-
ergy of the island connected to the wire,ẼC . We will show
now that the estimate forVc that follows from the RG equa
tion coincides~within exponential accuracy! with the results
of the instanton analysis.

Equation~71! may be solved with the method of chara
teristics. We define the functionv(Q)5ũ(Q)tanQ and then
introduce new ‘‘space’’ and ‘‘time’’ variables:j52ln sinQ
andt which is defined via the relation

4

GA~z!
dz5dt. ~72!

In terms of these new variables the RG equation~71! takes
the simple form:vt5vj , yielding v(j,t)5v0(j1t). As a
result,

ũ„z~t!,Q…5
e2tcosQ

A12e22tsin2Q
ũ0@arcsin~e2tsinQ!#. ~73!
2-11
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The dependencez~t! can be now found from Eq.~72! with
the Andreev conductance given byGA(z)5GDũQ(z,p/2).

Our goal is to find a scalezc , where the Andreev conduc
tanceGA becomes small. To findzc we notice that in terms
of the RG timet the smallness ofGA means the limitt→`.
Then, using definition oft given by Eq.~72!, we find

zc52
GD

4 E
0

`

dt
ũ0~arcsine2t!

Ae2t21

52
GD

4 E
0

p/2

dQũ0~Q!. ~74!

Recalling the definition ofũ0(Q) and comparing this resul
with Eq. ~50! we conclude thatzc5S1. As a result, the am-
plitude of the lowest oscillatory component (;cospq) of the
free energy, from the RG point of view, is given by th
precisely the same exponential factor as in the framewor
the instanton calculation.

Yet another instructive way to approach the proble
is to follow the renormalization of the instanton actio
According to Eq. ~50!, SW(z)52uWu(GD/2)(kg4k22(z)
52uWu(GD/4)*0

p/2dQũ0(Q). Employing Eq. ~71!, one
finds

dSW

dz
5

uWuGD

GA~z!
@ ũ~Q!tanQ#uQ→ p/252uWu, ~75!

where in the last equality we have used thatGA(z)
5GDũQ(z,p/2). ~In the normal case one findsdSW

N /dz
52uWu/2; only evenW are allowed.! From the dimensiona
analysis one expectsF(q);Vexp$2S1%cospq1•••, where
V;ECGA is the cutoff energy. We may now renormaliz
down the cutoff energyV→V(z)[Ve2z, simultaneously
following renormalization of the action,S1→S1(z). Accord-
ing to Eq.~75!, S1(z)5S12z. As a result,

V~z!e2S1(z)5const. ~76!

This means that the lowest oscillatory component of the f
energy is expected to be temperature independent, in ag
ment with Eq.~68! ~up to the ln factor, originating from the
zero modes!. The instanton calculation is done atz50; alter-
natively the RG calculation presented above looks forzc ,
such thatSW(zc)'0 ~the scale where the instantons do n
cost anything!. In view of Eq. ~76! it is not surprising that
they yield the same result. Moreover, one can renorma
down to any intermediate scalez @such thatGA(z).1# and
then calculate the instanton action with the current para
eters$g l(z)%- the result is still guaranteed to be the sam
Notice also that the renormalized actionSW(z)5SW
2uWu ln(GAEC /T) coincides with the result that comes fro
the instanton action together with the massive Gaussian
tuations, cf. Eqs.~62!–~65!. The effect of the zero mode
(ln EC /T in the prefactor! is missed in the one-loop RG ca
culation.

Finally we comment upon the comparison of the appro
used in this section with Ref. 27, where the same kind of
approach was employed in the case of two-dimensional
05450
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mal conductor with very low Thouless energy,ETh!EC . In
the last case the RG procedures involves simultaneous
gration over phase fluctuationsF~t! and diffuson/Cooperon
modes in the normal conductor. As a result, the full fun
tional RG equation contains three terms in the r.h.s.: o
coming from Eq.~41!, the second is similar to Eq.~71!, and
the third contribution accounts for the Cooper-channel rep
sion in the normal conductor~cf. Refs. 11 and 25!. The re-
sultant RG equation cannot be reduced to the set of e
harmonicsũ only; we are not aware of any method to sol
it apart from ‘‘brute-force’’ numerical integration. Conside
able simplification of the problem treated here stems fr
the fact that, due to the conditionETh@EC all diffuson/
Cooperon modes may be integrated outbefore ~means at
larger energies than! the phase fluctuationsF~t! become rel-
evant. This procedure leads to the action functionalSTD that
depends uponF~t! trajectory only, as defined in Eq.~46!.
Thus the results presented in this section can be consid
as ‘‘minimal generalization’’ of those obtained in Ref. 26.

VI. DISCUSSION OF THE RESULTS

The main result of our study, given by Eq.~68!, applies in
the temperature range

ẼC<T!min$EC ,T* %, ~77!

whereT* is the parity-effect temperature given by Eq.~11!.
The conditionT!T* ensures that both even and odd win
ing numbers contribute to the partition function, sin
A(T)!1; c.f. Eq. ~10!. The two lowest oscillatory compo
nents of the free energy are given then by Eq.~68!. At higher
temperatureT;T* , an addition of an odd number of elec
trons to the dot becomes possible, changing the relative
plitude of the harmonics. On the level of the partition fun
tion the components with odd winding numbers acquire
temperature dependent factor exp$2A(T)%. As a result, one
finds for the gate voltage dependent free energy:

F~q!52ẼCFe2A(T)lnS EC

T D cos~pq!

1S ~12e22A(T)!ln2S EC

T D2
p2

6 D
3

ẼC

4T
cos~2pq!1 . . . G . ~78!

Finally atT.T* the parity effect disappears and only th
normal ~unit! oscillation period remains in the free energy

F~q!52ẼC

ẼCS ln2S EC

T D2
p2

6 D
4T

cos~2pq!1•••. ~79!

Notice that if lnEC /T*.p/A6 there is the sign change of th
cos(2pq) component atT'T* . Moreover, unlike the low
temperature case, where the amplitude of the dominant
monics was weakly~logarithmically! temperature dependen
2-12
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Eq. ~68!, at larger temperature there is the stronger dep
dence@;T21ln2(EC /T)# of the amplitude. The characterist
crossover temperature is determined from the rela
A(T†)' ln(T†/ẼC) and is given by

T†5
D

ln~D/GAd!
, ~80!

where we have used the fact thatS1;GA .
We emphasize an interesting feature of the weak Coulo

blockade compared to the usual one: although the role
effective Coulomb energy is taken by the effective ene
ẼC!EC , the oscillation amplitude depends relative
weakly upon temperature within the range given by Eq.~77!.
This is to be contrasted with the usual case of an isl
connected by highly resistive contacts: at temperatureT
.EC oscillation amplitude vanishes exponentially fast w
T/4EC .

Next we shall discuss the quantitative value of the ren
malized charging energyẼC , which determines both the
magnitude of the CB and the region of applicability of o
results. To this end we need to evaluateS1(t) ~where t
5GT /GD), which is given by one of the two equivalen
expressions, Eqs.~34! or ~50!. In the two limiting casest
!1 ~the tunneling barrier limit! andt@1 ~the diffusive metal
limit ! the answer may be found analytically. One obtains

S152 ln
2p2ẼC

GA
2EC

5
GA

8 H 1 in the tunneling limit,

p2/4 in the diffusive limit,
~81!

where the Andreev conductance is given by Eq.~48!. Recall
that for a normal dot the corresponding exponent is given
GN/2 in the tunneling limit andGNp2/8 in the diffusive
limit. We observe that upon the same dissipative conducta
the SC dot exhibits factor of 4~in the two limiting cases!
smaller action. Therefore one may observe a sizable CB
the superconductive state, while in the analogous normal
the CB is practically suppressed. The crossover behavio
the SC actionS1(t), the normal actionS 2

N(t), and the An-
dreev conductanceGA(t) as a function oft5GT /GD is de-
picted in Fig. 2. Dependence of the same quantities on
resistanceGD

21 of the normal region at fixedGT is demon-
strated in Fig. 3.

In the caseẼC!T† the crossover betweenT,T† and T
.T† regimes leads to the sharp drop of the oscillation a
plitude by the factor (ẼC/4T†)ln(EC /T†)!1. The same drop
in the residual Coulomb blockade may occur as a function
magnetic field, due to the suppression of theD and thus ofT†

by the magnetic field. This may result in a strong negat
magnetoresistance at low temperatures of a granular m
made out of small superconductive grains~cf., e.g., Ref. 34!
for the discussion of relevant experiments!. This effect can
occur if the low-temperature oscillation amplitudeẼC is suf-
ficiently large to destroy Josephson coupling between gra
so transport of Cooper pairs between grains is blocked
ẼC . However, quantitative theory of such an effect is still
be developed.
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Another open question concerns the behavior ofF(q) in
the zero temperature limit,T,ẼC . As temperature decrease
below ẼC , all approximate methods that we used run out
their applicability range: the renormalized conductanceGA
drops below unity, fluctuations become strong, and ther
no a priori reason to treat them within Gaussian approxim
tion. Whereas the overall scale of the oscillation amplitude

FIG. 2. ~a! Normalized actions 8S1 /GA ~full line! and 2S 2
N/GN

~dashed line! as functions oft5GT /GD . Both graphs interpolate
between 1 in the tunneling limit andp2/4 in the diffusive limit.~b!
Andreev~full line! and normal~dashed line! conductances normal
ized byGD as functions oft.

FIG. 3. The same as Fig. 2 but normalized byGT . Notice that
the normal action exhibits a continuous ‘‘phase transition’’ atGD

5GT . The Andreev action has a maximum atGD'0.8GT , which
is a direct consequence of nonmonotonous dependence of the
dreev conductance on the resistance of the diffusive metal.
2-13
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FEIGELMAN, KAMENEV, LARKIN, AND SKVORTSOV PHYSICAL REVIEW B 66, 054502 ~2002!
probably given by its first harmonic, Eq.~68! at T;ẼC , and
is of the orderẼC ln(EC /ẼC), the precise shape of the osc
lations is still to be determined. It is possible that in theT
→0 limit the functionF(q) becomes nonanalytic at the d
generacy pointq51/2. An extreme case of such a nonan
lytic behavior—finite steps indF/dq at half-integerq—was
found in Ref. 24, where the Andreev conductance was c
pletely neglected.
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APPENDIX: INSTANTONS IN THE IMAGINARY-TIME
PROXIMITY ACTION

1. Transition to imaginary time

The method of the multicharge proximity action was in
tially developed11,25 in the Keldysh real-time representatio
Here we show how the Matsubara proximity action, Eq.~17!,
may be obtained from its Keldysh analog by analytic co
tinuation to imaginary time. Since this Appendix serves
lustrative purposes we will consider the simplest caseT
50. As discussed in the bulk of the paper, the form ofF(q)
is unknown atT50 since atT,ẼC the dilute instanton gas
approximation fails and one has to consider an interac
instanton liquid. Nevertheless, the overall scale of osci
tions in F(q) may be inferred from the single instanton a
tion, which is temperature independent and may be ca
lated atT50.

To proceed we need to establish a correspondence
tween our notations and those adopted in Refs. 11,25,
35. The latter notations will be designated by a prim
Firstly, our conductance quantumGQ5e2/2p\ is different
from GQ8 5e2/\ used in those papers. Secondly, the runn
parameterz and charges$gn% are related by

z

z8
5

gn8

gn
5

GD

8p2g8
. ~A1!

Thus, the Keldysh multicharge proximity action may be wr
ten in our notations as36

Sprox@F~ t !#52 i
GD

8 (
n51

`

gn~z!Tr~Q̌SĽN!n, ~A2!
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where the trace is taken over time indexes, Nambu
Keldysh spaces. HereQ̌S is a matrix in the superconductin
dot acting in the Nambu space as

Q̌S~ t !5S 0 e2iFJ (t)

e22iFJ (t) 0
D , ~A3!

whereFJ5diag(F. ,F,) is a matrix in the Keldysh space
with F.(t) andF,(t) being the fields residing on the for
ward and backward branches of the Keldysh contour. In
normal lead,ĽN(E)5Ľ0(E) ^ s3, wheres3 is the Pauli ma-
trix in the Nambu space, and the matrixĽN(E) acts in the
Keldysh space:

Ľ0~E!5S 122 f 22 f

2~ f 21! 2 f 21D , ~A4!

f (E) being the distribution function.
Tracing over the Nambu space reduces the action~A2! to

the following form:

Sprox@F~ t !#52 i
GD

4 (
n51

`

~21!ng2nE
2`

`

dt1•••dt2ntrK

3e2iFJ (t1)Ľ0~ t12t2!e22iFJ (t2)Ľ0~ t22t3! . . .

e22iFJ (t2n)Ľ0~ t2n2t1!, ~A5!

where the trace is taken only over the Keldysh space.
Transition to the imaginary time is achieved by the def

mation of the Keldysh contourC which initially run over the
time axis from2` to ` and then in the backward direction
The desired deformation introduces a vertical segmen
lengthb at some timet5t0 so that the contour originates a
2`1 ib/2, runs through the pointst01 ib/2,t0 to `, and
then back throught0 ,t02 ib/2 to 2`2 ib/2, see Fig. 4. For
the purpose of the evaluation of the instanton action
choice of the pointt0 is somewhat arbitrary. Note, howeve
that were we to consider, e.g., the correlation function of
form ^Ñ(q)Ñ(q8)&, it would be necessary to allow for adia
batic evolution of the gate voltageq5q(t),q85q(t8) and to
introduce two vertical segments at timest and t8.

FIG. 4. The initial Keldysh contour~a! and its deformation to
imaginary times~b!.
2-14
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The analysis is simplified in the zero-temperature ca
Choosing the position of the vertical segment att050, we
deform the forward segment~2`,0! of the Keldysh contour
to the upper imaginary half-axis and the backward segm
~0,2`! to the lower imaginary half-axis. The remaining ho
zontal appendix of the Keldysh contour running from 0 to`
and then back tot50 can be neglected as it does not co
tribute to thermodynamic quantities.

In order to continue the functionĽ0(t) to the complex
plane in time one should employ its analytic properties.37 In
deforming the contour to the imaginary axis the elem
Ľ0

12(t) enters only witht.0, and the elementĽ0
21(t) enters

only with t,0. Under this condition the functionĽ0(t) can
be substituted by28

Ľ0~t!→F~t!S 1 1

21 21D , F~t!52
1

pt
. ~A6!

Equation~A6! solves the problem of the analytic continu
tion of the Green functionĽ0(t).

The trivial matrix structure of Eq.~A6! ensures that eac
term in Eq.~A5! can be written as a multiple integral of th
single function

F~t!5H F.~t!, for t.0,

F,~t!, for t,0,
~A7!

defined on the whole imaginary axis. The infinitesimal e
mentdt is transformed to

dt→H 2 idt, for t.0,

idt, for t,0.
~A8!

Finally, we obtain36

Sprox@F~t!#52
GD

4 (
n51

`

g2nE
2`

`

dt1 . . . dt2n

3e2iF(t1)22iF(t2)1 . . . 22iF(t2n)F~t12t2!

3F~t22t3! . . . F~t2n2t1!, ~A9!

that coincides with Eq.~46! in the zero-temperature limit.

2. Instantons in time domain

Here we calculate the action on the trajectories for wh
e2iF(t) is an analytic function in the upper half-plane. F
such a solution, the instanton’s winding numberpW5DF
5*dt(]F/]t) is positive. Integration overt1 ,t3 , . . . ,t2n21
is performed with the help of

E dt1

p
e2iF(t1)

1

t02t1

1

t12t2
52 i

e2iF(t0)2e2iF(t2)

t02t2

2pe2iF(t0)d~t02t2!,

~A10!
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which is obtained by regularizing 1/t5@1/(t2 i0)11/(t
1 i0)#/2 and making use of analyticity ofe2iF(t) in the up-
per half-plane. As a result, the integral in Eq.~A9! is trans-
formed to

E
2`

`

)
k51

n S dt2k

p
e22iF(t2k)D

3)
k51

n F2 i
e2iF(t2(k21))2e2iF(t2(k11))

t2(k21)2t2(k11)

2pe2iF(t2k)d~t2(k21)2t2(k11)!G , ~A11!

wheret0[t2n andt2(n11)[t2. Expanding the last produc
and combining similar terms we rewrite it as

~21!nd~0!1 (
m51

n

Cn
m~21!n2mKm , ~A12!

where

Km5~2 i !mE
2`

`

)
k51

m S dt2k

p
e22iF(t2k)D

3)
k51

m
e2iF(t2(k21))2e2iF(t2(k11))

t2(k21)2t2(k11)
. ~A13!

The integrals forKm are calculated recursively with the he
of the relation

E dt2

p
e22iF(t1)

e2iF(t1)2e2iF(t2)

t12t2

e2iF(t2)2e2iF(t3)

t22t3

52i
e2iF(t1)2e2iF(t3)

t12t3
. ~A14!

Thereby we getKm52mW. For anti–instantons withW,0
the same analysis yieldsKm52muWu.

Now summation in Eq.~A12! becomes trivial and we
obtain for the instanton action

S@F~t!#52
GD

4 (
n51

`

g2n$~21!nd~0!1uWu@12~21!n#%.

~A15!

Equation~A15! formally contains the divergentd function of
zero argument. This part of the answer gives the action of
noninstanton configurationF5F05const and thus drops
from the differenceSW5S@F(t)#2S@F0# which coincides
with Eq. ~50! obtained in the frequency domain.
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