
ISSN 0021-3640, JETP Letters, 2020, Vol. 112, No. 7, pp. 428–436. © Pleiades Publishing, Inc., 2020.
Published in Russian in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 7, pp. 466–474.

CONDENSED 
MATTER
Suppression of Superconductivity in Disordered Films: 
Interplay of Two-Dimensional Diffusion 

and Three-Dimensional Ballistics1

D. S. Antonenkoa, b, c, * and M. A. Skvortsova, b, **
a Skolkovo Institute of Science and Technology, Moscow, 121205 Russia

b Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyi, Moscow region, 141700 Russia

*e-mail: antonenko@itp.ac.ru
**e-mail: skvor@itp.ac.ru

Received September 3, 2020; revised September 8, 2020; accepted September 8, 2020

Suppression of the critical temperature in homogeneously disordered superconducting films is a consequence
of the disorder-induced enhancement of Coulomb repulsion. We demonstrate that for the majority of thin
films studied now this effect cannot be completely explained under the assumption of two-dimensional dif-
fusive nature of electron motion. The main contribution to the suppression of Tc arises from the correction to
the electron–electron interaction constant coming from small scales of the order of the Fermi wavelength that
leads to the critical temperature shift , where kF is the Fermi momentum and l is the mean
free path. Thus almost for all superconducting films that follow the fermionic scenario of Tc suppression with
decreasing the film thickness, this effect is caused by the proximity to the three-dimensional Anderson local-
ization threshold and is controlled by the parameter kFl rather than the sheet resistance of the film.
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1. INTRODUCTION
The principal characteristics of a superconductor is

its transition temperature Tc. It is usually assumed that
Tc is a material property and does not depend on the
sample size. However, there is a strong experimental
evidence of the systematic decrease in the critical tem-
perature in disordered superconducting films with
decreasing its thickness, d (V [1], NbN [2–9], TiN
[10], MoGe [11, 12], MoSi [13, 14], MoC [15], WRe
[16], InO [17], etc. [18]). The suppression of Tc
becomes pronounced typically at  nm, and for
the thinnest films Tc may eventually vanish, marking
the point of a quantum superconductor–metal or
superconductor–insulator transition [19–24].

Depending on the underlying structure of a mate-
rial, two scenarios of suppression of Tc, fermionic and
bosonic, have been identified. The bosonic scenario
applies to granular and/or strongly inhomogeneous
superconductors with localized preformed Cooper
pairs (polycrystalline TiN, amorphous InO) [25–28],
where Tc signals proliferation of superconducting
coherence from micro- to macro-scales. In the fermi-

onic scenario, relevant for structureless homoge-
neously disordered superconductors (NbN, MoGe,
etc.), suppression of superconductivity is a conse-
quence of the disorder-induced enhancement of elec-
tron repulsion [29, 30], which leads to the decrease in
the effective Cooper pairing constant. Despite the
common physical mechanism of disorder-induced Tc
suppression in the fermionic scenario, its description
for three- and two-dimensional systems is rather dif-
ferent.

In the three-dimensional (3D) geometry, enhance-
ment of repulsion due to scattering off the impurity
potential is provided by small distances, not exceeding
the mean free path l. As a result, the whole effect can
be completely described by the change in the Cooper
pairing constant. The fermionic mechanism for
strongly disordered 3D superconductors near the
Anderson localization threshold (kFl ~ 1, where kF is
the Fermi momentum) was studied by Anderson,
Muttalib, and Ramakrishnan [31]. They also esti-
mated the correction to the bare electron–electron
interaction constant  in the case of weak disorder
( ): . Similar expressions were
reported in [32, 33]. This estimate can be easily
obtained by cutting the 3D diffusive contribution at
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1 Supplementary materials are available for this article at
https://doi.org/10.1134/S0021364020190017 and are accessible
for authorized users.
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Fig. 1. Experimentally relevant hierarchy of length scales
in disordered superconducting films.

c

λF
the ultraviolet cutoff . However, as shown by
Belitz and Kirkpatrick in their study of weak-localiza-
tion correction to the conductivity [34, 35], diffusive
contributions in the 3D geometry are extended to the
ballistic region up to the distances of the order of
wavelength and have a relative order of  rather
than . Similar phenomenon of extension of
interaction-induced contribution from the diffusive to
the ballistic region is also known for the tunneling
density of states, both in two-dimensional [36] and
three-dimensional geometries [37, 38].

Disorder-induced renormalization of the elec-
tron–phonon interaction and its impact on supercon-
ductivity were studied by Keck and Schmid [39]. They
showed that the displacement of impurities by the lat-
tice vibrations leads to the suppression of the interac-
tion with longitudinal phonons and the emergence of
the interaction with transverse phonons. An attempt to
account for the impurity corrections both to the Cou-
lomb and electron–phonon interactions and their
influence on Tc was taken by Belitz with the help of the
exact-eigenstates technique [40] and by solving full
Gor’kov equations in the strong-coupling regime [41–
43]. A part of his results can be interpreted as a correc-
tion to the bare electron–electron coupling constant

. However, Belitz’s results were called
into question by Finkel’stein [44] by demonstrating
that elastic diagrams, intimately related to the correc-
tion to the tunneling density of states [45, 46] and
claimed to be essential by Belitz, actually do not con-
tribute to the Tc shift in the leading order.

The main difference of the two-dimensional (2D)
geometry compared to the 3D case is that the renor-
malization effect does not boil down to the energy-
independent shift of the coupling constant  and
requires a summation of the leading logarithms. Con-
ventional description of Tc suppression in thin super-
conducting films substantially relies on 2D diffusive
nature of electron motion, which is motivated by the
experimentally relevant hierarchy of length scales

 (see Fig. 1). (Here,  is the Fermi
wavelength,  is the superconducting
coherence length in the dirty limit, and D is the diffu-
sion constant.) In this paradigm, enhancement of dis-
order with the decrease in the film thickness d is
related to the increase in the sheet resistance of the
film, .

The effect of Tc shift due to the interplay of disorder
and interaction was studied on a perturbative level in
[45–49], where the 2D diffusive contribution to the Tc
shift was calculated:

(1)
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where  is the critical temperature of a bulk super-
conductor,  =  is the
dimensionless film conductance, and λ is the dimen-
sionless coupling constant of the electron–electron
interaction (for the screened Coulomb interaction,

). The parameter  is the time when diffusion
becomes two-dimensional: , where τ
is the elastic scattering time and  is the
time of diffusion across the film thickness [44, 47]. In
real space, the logarithm in Eq. (1) is accumulated
from the 2D diffusion from the length scale 
to the coherence length . The correction (1),
inversely proportional to the film conductance, is
conceptually similar to the weak-localization [50, 51]
and interaction-related [30] corrections to the 2D
conductivity, while two out of three powers of the log-
arithm are due to the exponential sensitivity of Tc to
the coupling constant .

The first-order perturbative result (1) has later been
generalized to the case of arbitrarily strong Tc suppres-
sion by Finkel’stein, who managed to sum the leading
logarithms with the help of the renormalization-group
technique [44, 52]. The same result can be obtained by
solving the self-consistency equation with an energy-
dependent Cooper coupling 

 [53]. For the screened Cou-
lomb interaction ( ), the nonperturbative
expression for the critical temperature as a function of
the dimensionless film conductance valid until super-
conductivity is fully suppressed is given by:

(2)

where  and . Expres-
sion (2), where γ is considered as a fitting parameter, was
used by Finkel’stein [44] to explain the observed
dependence of Tc in MoGe films [11] on the film
thickness, the latter being directly related to the
dimensionless conductance g. Since then, such an
explanation of experimental data on superconductivity
suppression in disordered films has become generally
accepted [14, 15, 54].
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Table 1. Parameters of superconducting films*: bulk critical temperature , thickness d, mean free path l, the value of γ
obtained from fitting  dependence with Eq. (2) and the values of the two logarithms:  and

*For WRe and TiN films, we took , where a is the interatomic distance. For MoC films, the free electron mass was taken
for the effective mass.

Material Ref. , K d, nm l, Å

NbN  [4] 15 2–15 ~5 5.0 5.7 5.6–3.4
NbN  [5] 15 1–26 2 8.3 7.2 6.2–2.1
NbN  [8] 17 >50 <7 − 4.8 3D
TiN  [10] 5 3.6–5 3 6.2 8.9 6.4–2.4
MoGe  [11, 52] 7 1.5–100 ~4 8.2 6 <4.0
MoSi  [13] 7 1–20 5 7.0 5.6 <4.7
MoC  [15] 8 3–30 <4 7.5 5.5 3.2–0.9
WRe  [16] 6 3–120 4 7.4 6.1 <2.7
Nb  [58] 7 2.5–26 18 11.7 5.2 <4.8

c0T
c( )T g c0log( / )T= τ�+

c0log( / )d dT= τ�+

c0T 1
fit
−γ + d+

F1/k l a∼ ∼
According to Eqs. (1) and (2), Tc suppression in
thin ( ) superconducting films is entirely deter-
mined by the dimensionless sheet conductance g.
Such a statement perfectly fits the general theoretical
framework of scaling [50], justified by the renormal-
ization-group analysis of the nonlinear sigma model in
the 2D space [55–57].

However, interpretation of experimental data on
 dependence with the help of Eq. (2) encounters

a number of significant difficulties. The first one is the
internal inconsistency of the approach that treats γ as
a free fitting parameter. As follows from Table 1, which
contains experimental data on different films, the val-
ues of  obtained by fitting  dependence with
the help of Eq. (2) typically lie in the interval of 7–9.
The issue is that these values significantly exceed the
theoretical estimate  (last col-
umn in Table 1), and in half of the cases exceed even
the quantity  (last but one column in
Table 1). Taking into account that the perturbative
shift of Tc, according to Eq. (1), is proportional to the
third power of this logarithm, one can conclude that
the discrepancy between the microscopic theory and
the result of the fit with Eq. (2) appears to be very
large. One can try to save the situation by pointing to
the fact that  should also contain the contribution of
3D diffusion, but that makes the usage of Eqs. (1) and
(2) dubious as they were obtained under the assump-
tion of 2D diffusion.

Another problem with interpreting experimental
data in terms of Eq. (2) is an implicit assumption that
the effect of Tc suppression is determined by the
dimensionless film conductance only. However, in
real thin films, the impurity concentration and hence
the mean free path l do vary with the film thickness

0d ξ!

c( )T d

1
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−γ c( )T d
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ln( / )T= τ�+

1
fit
−γ
due to peculiarities of the fabrication process. Large
amount of experimental data on the critical tempera-
ture of thin films was analyzed in [59], where it was
demonstrated that Tc is primarily dependent on the

3D bulk conductivity  rather than the 2D sheet
conductance .

Inapplicability of Eq. (2) for the description of Tc
suppression in thin films is actually a consequence of
(i) too narrow interval of 2D diffusion (from d to ),
which appears to be insufficient to explain the
observed magnitude of the effect and (ii) the smallness
of the prefactor . Hence, for a
quantitative description of experimental data, one has
to specify another mechanism of disorder-induced
enhancement of the Coulomb interaction that is not
related to 2D diffusion.

In this work, we demonstrate that existing experi-
mental data on Tc suppression in thin films can be
convincingly explained assuming that the main contri-
bution stems from the processes of three-dimensional
ballistic motion of electrons with a typical distance
between the interaction point and the point of impu-
rity scattering of the order of several wavelengths. Our
main result is the amendment of the perturbative
expression (1) for Tc shift:

(3)

where the added first term accounts for the contribu-
tion of the 3D ballistic region. We emphasize that
since all scales starting from the Fermi wavelengths
contribute to Tc suppression, keeping the last term
originating from the 2D diffusion region on the back-
ground of the first one may be justified only for mate-

2
Fk lσ ∝

2
Fg k ld∝

0ξ

1 1
F F1/ ( ) ( )g k l k d− −

∼

3c

c0 F c0

log
3 d

T
T k l g T
δ α λ= − − ,

π τ
�

JETP LETTERS  Vol. 112  No. 7  2020



SUPPRESSION OF SUPERCONDUCTIVITY IN DISORDERED FILMS 431

Fig. 2. Inelastic diagrams for the diffusive contribution
(  and , where q is the momentum car-
ried by the interaction line) to the Cooper susceptibility
that determine Tc shift. The shaded blocks in the center of
the diagrams are cooperons and diffusons connecting the
Green’s functions with the opposite Matsubara energy
signs. The shaded triangles in the corners of the diagrams
designate renormalization of the phonon vertex by the
impurity ladders and ladders of electron interaction with
the constant λ.

'

' '

'

1/q l! ' 1/E E, τ!
rials with exceptionally low Tc or very small thickness
(in particular, for atomically thin films [60]).

The coefficient α in Eq. (3) is nonuniversal and
depends on the details of the interaction and the struc-
ture of the random potential. In the model of weak
short-range electron repulsion (amplitude λ) and
Gaussian white-noise random potential, it is given by

(4)

For realistic superconducting films with the Coulomb
interaction one should expect a material dependent
value .

2. MODEL
We consider a model of s-wave superconductivity

with a phonon-mediated electron attraction described
by the potential  effective in the
in the energy strip of  near the Fermi energy, and a
short-range repulsion with the potential 

 and an energy cutoff at EF. We will work in
the weak-coupling approximation, , , and
neglect disorder-induced renormalization of the pho-
non vertex beyond the ladder approximation [39].
Disorder is modeled by a random potential with the
Gaussian white-noise statistics described by the cor-
relator , where ν is the
density of states at the Fermi level (for one spin projec-
tion) and  is the elastic scattering time.

In the absence of disorder-induced renormaliza-
tion of the interaction vertices, Tc is given by the stan-
dard expression of the Bardeen–Cooper–Schrieffer
(BCS) theory:

(5)

where the effective coupling constant is

(6)

The second term, known as the Tolmachev logarithm
in Russia and as the Coulomb pseudopotential in the
West, describes the effect of the Coulomb repulsion in
the Cooper channel undergoing logarithmic renor-
malization in the energy window from EF to  [61–
63], see also the supplemental material.

The critical temperature is determined by the pole
of the Cooper ladder at zero momentum and fre-
quency in the Matsubara diagrammatic technique. In
the presence of a random potential, the diagrammatic
series should be averaged over disorder in every possi-
ble way. In the leading order (no-crossing approxima-
tion), this process reduces to independent averaging of
the product of the two Green’s functions, , con-
necting the interaction vertices (  or λ), which is
done via insertion of a cooperon. According to the
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Anderson theorem [64–66], the result is disorder
independent and leads to Eqs. (5) and (6) for the crit-
ical temperature.

3. DIFFUSIVE CONTRIBUTION

In order to find the shift of Tc, one has to take into
account processes describing an interplay of interac-
tion and disorder in the next order with respect to no-
crossing diagrams [44–46, 48, 49, 52]. The leading
diagrammatic contributions in the diffusive region are
shown in Fig. 2, where the interaction (zigzag line) is
crossed by the impurity ladders, diffusions and coop-
erons, depicted as gray blocks. The diagram (a) has a
mirrored counterpart, while the diagram (b) contains
two additional contributions with an impurity line
connecting the Green’s functions with the energy of
the same sign (Hikami box) [67]. Analytical expres-
sion for Tc shift contains a summation over two Mat-
subara energies E and  (see the supplemental mate-
rial):

(7)

where the factor  and the logarithmic function
 = 

represent renormalization effects, which can be intro-
duced by adding λ-interaction ladders to the left and
right vertex of the diagram. In the diffusive region, the
quantity  in the film geometry can be expressed
via an integral over the 2D in-plane momentum  and
a sum over the transverse modes of the Laplace
operator with the Neumann boundary conditions
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Fig. 3. (Color online) Sketch of the dependence of inte-
grand in Eq. (8) on q (at not too large ). In the
region  it has a weak q dependence, changing by a

factor of  at the crossover from the diffusive to ballistic
motion (at ).

ξ F

'E E+
1/q d>

2/8π
1/q l∼

Fig. 4. (a) Electron–electron interaction vertex λc in the
Cooper channel with the first impurity line of the sur-
rounding cooperons. (b, c) Diagrams describing the lead-

ing vertex correction  from the ballistic region. Both
diagrams have mirrored counterparts.

' '

''

'

'

δλc
, 'E E
( , with , 1, …) carried by the interac-
tion line (see the supplemental material):

(8)

To trace the crossover to the ballistic region, we write
cooperons and diffusons beyond the diffusive approx-
imation and express them via the function  =

, which corresponds to the
one step of the impurity ladder at arbitrary values of 
and , but under the conditions  and .
An analogous approach was used in [68] to calculate
the f luctuation conductivity at arbitrary disorder
strength.

The leading 2D diffusive contribution stems from
the mode with . Cutting the integral over q at the
momentum 1/d and the energy summation at , and
taking into account that for realistic films studied in
experiments the Debye frequency  is comparable to

 [9], we arrive at the well-known result (1) with
. Note, however, that the extraction of the 2D

diffusive contribution out of expressions (7) and (8) is
complicated by the fact that the contributions of other
regions are in fact larger. Indeed, at the scale 
the 2D logarithmic behavior is changed to a linearly
divergent one due to excitation of higher transverse
modes, making the momentum integral three-dimen-
sional. One can estimate the contribution of the 3D
diffusive region by introducing an artificial cutoff at

, which gives

(9)

This contribution has only two out of three logarith-
mic factors but it exceeds Eq. (1) by the parameter

. However, nothing prevents considering even
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greater momenta in Eq. (8) and study the ballistic
region . Remarkably, in this region the inte-
grand of Eq. (8) still obeys the  behavior, but with
a different numerical prefactor. This means that the
main contribution to the integral originates from
momenta of the order of Fermi momentum, .
This region requires a special treatment, which will be
done below. Schematically, the role of different
momentum regions is illustrated in Fig. 3. Up to loga-
rithmic factors coming from the energy summations,
the integral of the shown curve determines the contri-
bution of the corresponding regions to Tc shift.

4. BALLISTIC CONTRIBUTION
In this section, we study the ballistic contribution

to Tc shift originating from processes with the momen-
tum transfer . Due to the assumption ,
electron motion can be assumed to be three-dimen-
sional. This contribution is described by the diagrams
shown in Fig. 2, where we left only one impurity line
out of the diffusive ladder, which corresponds to scat-
tering on one impurity. For an accurate calculation,
one should reconsider expression (8), relaxing the
assumption .

The ballistic contribution can be described as a
correction to the bare (unrenormalized) repulsive
electron–electron coupling constant in the Cooper
channel, , which in the leading order coincides with
λ (Fig. 4a). The leading corrections are given by the
diagrams Figs. 4b and 4c. In the considered model of
point-like interaction and delta-correlated disorder,
the calculation of these diagrams can be performed
analytically and leads, generally speaking, to an
energy-dependent correction  to the Cooper-
channel coupling:

(10)

where the terms in the brackets correspond to the dia-
grams (b) and (c), respectively, and the numerical
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coefficient 2 is due to mirrored diagrams. The factors
 in the denominator originate from

the momentum integration of a pair of the Green’s
functions in Fig. 4a (one step of the diffusive ladder).

It is convenient to calculate the block  in
the coordinate representation [38]. Since the elec-
tron–electron interaction as well as the disorder cor-
relator are assumed to be point-like, analytical expres-
sion contains only one integral over the distance r
between the impurity and the interaction point, so
we get:

(11)

where  are disorder-averaged Green’s
functions and the prime refers to the energy argument

. The square brackets denote the real-space convo-

lution: . As will be
demonstrated below, the integral over  in Eq. (11)
converges on the scale  that allows replacing the
Green’s functions by their values in the absence of dis-
order:

(12)

where the convolution was calculated under the
assumption .

One can easily show that the integral in Eq. (11)
vanishes for different signs of the energies E and ,
and thus . Thereby in the consid-
ered model, the ballistic diagrams in Figs. 4b and 4c
are nonzero for the same relation between the energy
signs as for the diffusive diagrams in Figs. 2a and 2b,
respectively. This conclusion is a priori not obvious
because a single impurity line can connect two
Green’s functions of the same energy sign. However,
we see that in the case of the point-like interaction and
delta-correlated disorder, these diagrams vanish in the
ballistic limit as well.

Substituting Eq. (12) to Eq. (11) and then to
Eq. (10), we observe that the factors  and

 in the denominators of  and 
cancel the same factors  and  in Eq. (10).

The only energy dependence of  is thus due to
the factor  contained in the block .
However, it also disappears because of the structure of
Eq. (10). As a result, the correction  appears to
be energy-independent:
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As expected, the integral stems from the scales of the
order of the electron wavelength, which is typical for
3D mesoscopic effects [34, 69, 70].

The obtained correction may be interpreted in the
spirit of [36] as the renormalization of the contribution
of electron–electron interaction to the Cooper chan-
nel due to scattering on Friedel oscillations, caused by
impurities. This correction describes the enhance-
ment of the electron–electron repulsion, leading to
the increase in the Coulomb pseudopotential and,
consequently, to the suppression of the effective cou-
pling constant . Suppression of Tc can be found by

substituting λ by  and expanding Eq. (6) in :

(14)

5. ROLE OF ELASTIC DIAGRAMS
Besides inelastic diagrams shown in Figs. 2 and 4,

where the interaction line connects the upper and
lower Green’s functions, there is a set of elastic dia-
grams related to the interaction correction to the one-
particle Green’s function. As demonstrated by Fin-
kel’stein [44] for 2D diffusion, the contribution of this
set of diagrams is always small: at  they con-
tain a smaller power of a large logarithm, while at

 their contribution is canceled by contribu-
tions of inelastic diagrams and of an additional set of
diagrams restoring the gauge invariance of the theory.
The latter diagrams become subleading already in the
diffusive region at  and therefore are not con-
sidered in the present paper.

In the case of an instantaneous electron–electron
interaction, there is an exact relation [40, 45, 46]
between the contribution of elastic diagrams to Tc shift
and correction to the tunneling density of states ,
which can be represented in the form analogous to
Eq. (7) (see the supplemental material):

(15)

We will use known results for  in order to estimate
the contribution (15) of elastic diagrams.

The correction to the tunneling density of states of
a 3D metal in the diffusive region ( ) has the
form  [71]. A simple algebra
reveals that the contribution to Tc shift from this region

is proportional to , which is parametrically
smaller than the contribution of the ballistic region
discussed below.

The correction to the tunneling density of states in
the 3D ballistic region ( ) was studied in [37,
38] and appeared to be linear in energy and generally

BCSλ
cλ + δλ cδλ

,
 δ ωπ λ= − . + λ ω 

2(ball 3D)
c D c0

c0 F F D

log /
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T T
T k l E

2Dq > ω
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2Dq > ω

( )δν ε

2(elast) 2
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2 2
c BCS 0
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E

T u ET d
T E

λ δ δν ε= ε . λ ν+ ε 


( )δν ε

| | 1/ε < τ
2

diff 0 F( )/ | | /( )k lδν ε ν λ ε τ∼

2
F1/( )k l

| | 1/ε > τ
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Fig. 5. (Color online) Experimental points for the dependence of Tc on  and (solid line) their fitting by Eq. (17) for supercon-
ducting films of different thicknesses and compositions (a) NbN [8], (b) MoC [15], and (c) V [1].
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c

F

cc

F
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asymmetric with respect to the Fermi level. In the case
of a point-like interaction, delta-correlated disorder,
and parabolic electron spectrum, it is finite only for
energies below the Fermi energy and has the form

 [38]. Then, Eq. (15)
yields

(16)

which is parametrically smaller than the leading con-
tribution (14) under the model assumption . The
absence of a linear-in-λ contribution from elastic dia-
grams is related to the fact that, contrary to Eq. (7)
with two logarithmic summations over E and , the
integral (15) in the 3D ballistic region is not logarith-
mic. The conclusion that elastic diagrams do not con-
tribute to the leading Tc shift is presumably quite gen-
eral and related to the fact that the tunneling density of
states is not a thermodynamic quantity.

6. CONCLUSIONS
To summarize, we have studied the influence of the

3D ballistic region of electrons motion on the critical
temperature degradation of moderately disordered
superconducting films ( ). Within the model of
a point-like repulsion and delta-correlated disorder,
we have calculated the perturbative contribution of
this region to Tc suppression given by the first term in
Eq. (3). When comparing our theory with experimen-
tal data, one should take into account that in real sam-
ples  due to the Coulomb interaction and that
the numerical factor in Eq. (4) is model-specific. In
general, one might expect that the ballistic contribu-
tion to Tc shift has the form  with

.
The second term in Eq. (3) describes the standard

contribution to Tc suppression originating from the
region of two-dimensional electron diffusion, where
the logarithm stems from the spatial scales between
the film thickness d and the coherence length . The
smallness of this interval for realistic films and a rela-
tively large value of the dimensionless conductance

ball 0 F( )/ | | ( )/( )k lδν ε ν λ ε θ −ε∼

2(ball 3D elast) 3
c D c0

c0 F F D

log /
1 log /

T T
T k l E

, ,
 δ ωλ , + λ ω 

∼

1λ !

'E

F 1k l @

1/2λ ∼

c c0 F/ /T T k lδ = −α
1α ∼

0ξ
 makes it practically negligible com-
pared to the three-dimensional ballistic contribution.

Figure 5 presents the fits of experimental data (Tc,
kFl) for superconducting films of different thicknesses
made of three different materials following the fermi-
onic scenario of Tc suppression by the formula

(17)

where α and  are treated as fitting parameters. A
rather good agreement is observed, with the material-
dependent value of α being of the order of one, as
expected. We emphasize that the data for NbN pre-
sented in Fig. 5a refer to thick films [8], for which
there is no two-dimensional diffusive region at all (see
Table 1).

Based on (i) the observed agreement between
experimental data and Eq. (17), (ii) intrinsic inconsis-
tencies of the theory behind Eq. (2) mentioned above,
and (iii) the findings of [59], which indicate that Tc is
primarily dependent on the 3D conductivity rather
than the 2D sheet conductance, we make the follow-
ing practically relevant conclusion:

For a substantial fraction of not too thin moderately
disordered superconducting films that follow the fermi-
onic scenario of superconductivity suppression, the latter
is governed by the proximity to the threshold of three-
dimensional Anderson localization and controlled by the
parameter . Two-dimensional diffusion effects, con-
trolled by dimensionless conductance g are also present,
but they typically constitute only a small correction on top
of three-dimensional ballistic effects.

ACKNOWLEDGMENTS

We are grateful to I.S. Burmistrov, M.V. Feigel’man,
A.M. Finkel’stein, P. Samuely, P. Szabó, K.S. Tikhonov,
and P.M. Ostrovsky for useful discussions.

FUNDING

This work was supported by the Russian Science Foun-
dation, project no. 20-12-00361.

F F( )( )g k l k d∼

c F c0(1 / )T k l T= − α ,

c0T

Fk l
JETP LETTERS  Vol. 112  No. 7  2020



SUPPRESSION OF SUPERCONDUCTIVITY IN DISORDERED FILMS 435
REFERENCES
1. A. A. Teplov, Sov. Phys. JETP 44, 422 (1976).
2. Z. Wang, A. Kawakami, Y. Uzawa, and B. Komiyama,

J. Appl. Phys. 79, 7837 (1996).
3. A. Semenov, B. Günther, U. Böttger, H.-W. Hübers,

H. Bartolf, A. Engel, A. Schilling, K. Ilin, M. Siegel,
R. Schneider, D. Gerthsen, and N. A. Gippius, Phys.
Rev. B 80, 054510 (2009).

4. Y. Noat, V. Cherkez, C. Brun, T. Cren, C. Carbillet,
F. Debontridder, K. Ilin, M. Siegel, A. Semenov,
H.-W. Hübers, and D. Roditchev, Phys. Rev. B 88,
014503 (2013).

5. K. Makise, T. Odou, S. Ezaki, T. Asano, and B. Shi-
nozaki, Mater. Res. Express 2, 106001 (2015).

6. L. Kang, B. B. Jin, X. Y. Liu, X. Q. Jia, J. Chen,
Z. M. Ji, W. W. Xu, P. H. Wu, S. B. Mi, A. Pimenov,
Y. J. Wu, and B. G. Wang, J. Appl. Phys. 109, 033908
(2011).

7. S. Ezaki, K. Makise, B. Shinozaki, T. Odo, T. Asano,
H. Terai, T. Yamashita, S. Miki, and Z. Wang, J. Phys.:
Condens. Matter 24, 475702 (2012).

8. M. Chand, G. Saraswat, A. Kamlapure, M. Mondal,
S. Kumar, J. Jesudasan, V. Bagwe, L. Benfatto, V. Trip-
athi, and P. Raychaudhuri, Phys. Rev. B 85, 014508
(2012).

9. C. Carbillet, V. Cherkez, M. A. Skvortsov, M. V. Fei-
gel’man, F. Debontridder, L. B. Ioffe, V. S. Stolyarov,
K. Ilin, M. Siegel, C. Noûs, D. Roditchev, T. Cren, and
C. Brun, Phys. Rev. B 102, 024504 (2020).

10. B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur,
M. R. Baklanov, and M. Sanquer, Phys. Rev. Lett. 101,
157006 (2008).

11. J. M. Graybeal and M. R. Beasley, Phys. Rev. B 29,
4167 (1984).

12. D. Lotnyk, O. Onufriienko, T. Samuely, O. Shylenko,
V. Komanický, P. Szabó, A. Feher, and P. Samuely,
Low Temp. Phys. 43, 919 (2017).

13. N. Ya. Fogel, E. I. Buchstab, A. S. Pokhila, A. I. Eren-
burg, and V. Langer, Phys. Rev. B 53, 71 (1996).

14. A. Banerjee, L. J. Baker, A. Doye, M. Nord, R. M. Heath,
K. Erotokritou, D. Bosworth, Z. H. Barber, I. MacLar-
en, and R. H. Hadfield, Supercond. Sci. Technol. 30,
084010 (2017).

15. P. Szabó, T. Samuely, V. Hašková, J. Kačmarčík,
M. Žemlička, M. Grajcar, J. G. Rodrigo, and P. Sam-
uely, Phys. Rev. B 93, 014505 (2016).

16. H. Raffy, R. B. Laibowitz, P. Chaudhari, and S. Ma-
ekawa, Phys. Rev. B 28, 6607 (1983).

17. D. Shahar and Z. Ovadyahu, Phys. Rev. B 46, 10917
(1992).

18. M. Strongin, R. S. Thompson, O. F. Kammerer, and
J. E. Crow, Phys. Rev. B 1, 1078 (1970).

19. D. B. Haviland, Y. Liu, and A. M. Goldman, Phys.
Rev. Lett. 62, 2180 (1989).

20. M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).
21. V. F. Gantmakher and V. T. Dolgopolov, Phys. Usp. 53,

1 (2010).
22. I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Phys.

Rev. B 92, 014506 (2015).
JETP LETTERS  Vol. 112  No. 7  2020
23. A. Kapitulnik, S. A. Kivelson, and B. Spivak, Rev.
Mod. Phys. 91, 011002 (2019).

24. B. Sacépé, M. Feigel’man, and T. M. Klapwijk, Nat.
Phys. 16, 734 (2020).

25. M. V. Feigel’man, A. I. Larkin, and M. A. Skvortsov,
Phys. Rev. Lett. 86, 1869 (2001).

26. M. V. Feigel’man, L. B. Ioffe, V. E. Kravtsov, and
E. A. Yuzbashyan, Phys. Rev. Lett. 98, 027001 (2007).

27. M. V. Feigel’man, L. B. Ioffe, V. E. Kravtsov, and
E. Cuevas, Ann. Phys. 325, 1390 (2010).

28. B. Sacépé, T. Dubouchet, C. Chapelier, M. Sanquer,
M. Ovadia, D. Shahar, M. V. Feigel’man, and L. B. Iof-
fe, Nat. Phys. 7, 239 (2011).

29. B. L. Al’tshuler and A. G. Aronov, Sov. Phys. JETP 50,
968 (1979).

30. B. L. Altshuler and A. G. Aronov, Electron–Electron
Interaction in Disordered Systems, Ed. by A. L. Efros and
M. Pollak (North-Holland, Amsterdam, 1985).

31. P. W. Anderson, K. A. Muttalib, and T. V. Ramakrish-
nan, Phys. Rev. B 28, 117 (1983).

32. H. Fukuyama, H. Ebisawa, and S. Maekawa, J. Phys.
Soc. Jpn. 53, 3560 (1984).

33. B. Rabatin and R. Hlubina, Phys. Rev. B 98, 184519
(2018).

34. T. R. Kirkpatrick and D. Belitz, Phys. Rev. B 34, 2168
(1986).

35. P. W. Adams, D. A. Browne, and M. A. Paalanen, Phys.
Rev. B 45, 8837 (1992).

36. A. M. Rudin, I. L. Aleiner, and L. I. Glazman, Phys.
Rev. B 55, 9322 (1997).

37. A. A. Koulakov, Phys. Rev. B 62, 6858 (2000).
38. D. S. Antonenko and M. A. Skvortsov, Phys. Rev. B

101, 064204 (2020).
39. B. Keck and A. Schmid, J. Low Temp. Phys. 24, 611

(1976).
40. D. Belitz, J. Phys. F: Met. Phys. 15, 2315 (1985).
41. D. Belitz, Phys. Rev. B 35, 1636 (1987).
42. D. Belitz, Phys. Rev. B 35, 1651 (1987).
43. D. Belitz, Phys. Rev. B 36, 47 (1987).
44. A. M. Finkel’stein, Phys. B (Amsterdam, Neth.) 197,

636 (1994).
45. S. Maekawa and H. Fukuyama, J. Phys. Soc. Jpn. 51,

1380 (1982).
46. S. Maekawa and H. Fukuyama, J. Phys. Soc. Jpn. 52,

1352 (1983).
47. Yu. N. Ovchinnikov, Sov. Phys. JETP 37, 366 (1973).
48. H. Takagi and Y. Kuroda, Solid State Commun. 41,

643 (1982).
49. H. Ebisawa, H. Fukuyama, and S. Maekawa, J. Phys.

Soc. Jpn. 54, 2257 (1985).
50. E. Abrahams, P. W. Anderson, D. C. Licciardello, and

T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
51. L. P. Gorkov, A. I. Larkin, and D. E. Khmelnitsky,

JETP Lett. 30, 228 (1979).
52. A. M. Finkel’stein, JETP Lett. 45, 46 (1987).
53. M. V. Feigel’man and M. A. Skvortsov, Phys. Rev. Lett.

109, 147002 (2012).



436 ANTONENKO, SKVORTSOV
54. H. Kim, A. Ghimire, S. Jamali, T. K. Djidjou,
J. M. Gerton, and A. Rogachev, Phys. Rev. B 86,
024518 (2012).

55. K. B. Efetov, Supersymmetry in Disorder and Chaos
(Cambridge Univ. Press, Cambridge, 1996).

56. A. M. Finkelstein, Electron Liquid in Disordered Con-
ductors, Vol. 14 of Soviet Scientific Reviews, Ed. by
I. M. Khalatnikov (Harwood Academic, Glasgow,
1990).

57. I. S. Burmistrov, J. Exp. Theor. Phys. 129, 669 (2019).
58. F. Couedo, O. Crauste, L. Bergé, Y. Dolgorouky,

C. Marrache-Kikuchi, and L. Dumoulin, J. Phys.:
Conf. Ser. 400, 022011 (2012).

59. Y. Ivry, C.-S. Kim, A. E. Dane, D. De Fazio,
A. N. McCaughan, K. A. Sunter, Q. Zhao, and
K. K. Berggren, Phys. Rev. B 90, 214515 (2014).

60. C. Brun, T. Cren, V. Cherkez, F. Debontridder,
S. Pons, D. Fokin, M. C. Tringides, S. Bozhko,
L. B. Ioffe, B. L. Altshuler, and D. Roditchev, Nat.
Phys. 10, 444 (2014).

61. N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,
A New Method in the Theory of Superconductivity (Con-
sultants Bureau, New York, 1959).

62. P. Morel and P. W. Anderson, Phys. Rev. 125, 1263
(1962).

63. W. L. McMillan, Phys. Rev. 167, 331 (1968).
64. P. W. Anderson, Phys. Chem. Sol. 11, 26 (1959).
65. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 8,

1090 (1959).
66. A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 9,

220 (1959).
67. S. Hikami, Phys. Rev. B 24, 2671 (1981).
68. N. A. Stepanov and M. A. Skvortsov, Phys. Rev. B 97,

144517 (2018).
69. B. A. van Tiggelen and S. E. Skipetrov, Phys. Rev. E 73,

045601 (2006).
70. I. E. Smolyarenko and B. L. Altshuler, Phys. Rev. B 55,

10451 (1997).
71. B. L. Altshuler and A. G. Aronov, Solid State Com-

mun. 30, 115 (1979).
JETP LETTERS  Vol. 112  No. 7  2020


	1. INTRODUCTION
	2. MODEL
	3. DIFFUSIVE CONTRIBUTION
	4. BALLISTIC CONTRIBUTION
	5. ROLE OF ELASTIC DIAGRAMS
	6. CONCLUSIONS
	REFERENCES

