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We consider the statistical properties of a non-falling trajectory in the Whitney problem of an inverted pen-
dulum excited by an external force. In the case where the external force is white noise, we recently found the
instantaneous distribution function of the pendulum angle and velocity over an infinite time interval using a
transfer-matrix analysis of the supersymmetric field theory. Here, we generalize our approach to the case of
finite time intervals and multipoint correlation functions. Using the developed formalism, we calculate the
Lyapunov exponent, which determines the decay rate of correlations on a non-falling trajectory.
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1. Balancing an inverted pendulum under a given
time-dependent horizontal force f(r) is a famous
mathematical problem formulated by Courant and
Robbins in their book “What is Mathematics?” (first
editionin 1941) [1], where Whitney was credited as the
author of the problem. Using fairly general mathemat-
ical arguments based on the intermediate value theo-
rem, they showed that for any force f(¢) acting during
a finite time interval [0,7], an initial position of the
pendulum in the upper half-plane can be chosen such
that it will remain in the upper half-plane during the
further evolution for all 7 € [0,7]. The existence of a
non-falling trajectory (non-FT) in the Whitney prob-
lem has been the subject of an ongoing debate in the
mathematical literature [2, 3], resulting in a critical
analysis and refinement of the original arguments of
Courant and Robbins. Fresh interest in the problem of
an inverted pendulum is associated with Arnold,
whose view in 2002 was that this problem still awaits a
rigorous solution [4]. In 2014, Polekhin presented a
proof of the existence of the non-FT using the Waze-
wski topological principle [5]. This work provoked
several publications generalizing his approach and
proposing new topological methods [6—8] (see [8, 9]
for good reviews of the history of the Whitney prob-
lem).

Recently we developed a theory of the statistical
description of a never falling trajectory (NFT) of an
inverted pendulum under the action of a random force
[10]. An NFT can be regarded as the limit of non-FTs
in the Whitney problem as the length 7 of the time
interval tends to infinity. The NFT concept is illus-
trated in Fig. 1, which shows numerical solutions to

the boundary value problem for the pendulum equa-
tion (the angle 0 is measured from the vertical)

6=’ sin6 + f(f)cosO (1)

with different initial and final values 6(0) = 6, and
6(T') = 6, and a sufficiently rapidly varying force f().
For any 0, , in the strip —1t/2 < 6,, < /2, a non-fall-
ing solution (-m/2 < 6(T) < w/2) of this boundary
value problem exists and is unique [10]. As 6, and 6,
run through all possible values in the strip, the set of
corresponding non-FTs form a bundle, shown in color
in Fig. 1. This bundle shrinks as one moves away from
the boundary, becoming exponentially thin in the
middle of the interval for large 7. In the limit 7 — oo,
when the pendulum must be balanced on the entire
real axis, the non-FT bundle for the Whitney problem
on a finite time interval becomes infinitely thin and
defines a unique never falling trajectory, which is a
functional of the given force f (7).

In [10], we studied the statistical properties of an
NFT in the case where the driving force is Gaussian
white noise with the correlator

O f()) =208(t - 1'), (2)
and calculated the instantaneous distribution function

P(©, p) of the angle 6 and its velocity p = 6. Our
approach is based on the supersymmetric field theory
formulation of stochastic dynamics proposed by Parisi
and Sourlas [11—13], which allows averaging over the
random force at the very beginning of the calculations.
It is essential that for the considered problem, the
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Fig. 1. (Color online) Examples of non-falling trajectories
for the pendulum equation of motion (1) considered on
two time intervals 7= (a) 2/ and (b) 3/. For any choice

of 8, and 0, in the upper half-plane (|6] < 1t/2), there exists
a unique non-falling solution satisfying the boundary con-

ditions 6(0) = 6; and 6(T") = 6,. We plot 25 such trajecto-
ries with 6, = (=1,-0.5,0,0.5,1) x 7t/2. The driving force

is f(t) = 4Ziglcos(k(ot + k4) in both cases. (c) Inverted
pendulum under the action of a horizontal force.

Parisi—Sourlas method is free from the problem of the
sign of the fermionic determinant because of the
uniqueness of the non-FT. Using the idea of reducing
the one-dimensional functional integral to an effective
quantum mechanics [14], we were able to express the
distribution function P(0, p) in terms of the zero mode
of the transfer-matrix Hamiltonian, which reduces to
the Fokker—Planck operator with a special type of
boundary conditions ensuring that the trajectories do
not leave the strip.

Here, we extend the ideas of [10] and consider a
range of issues related to the Lyapunov exponent for a
non-FT. The Lyapunov exponent determines both the
law of the convergence of a non-FT on a finite time
interval to the NFT on an infinite time interval (see
Fig. 1) and the decay of different-time correlators on
the NFT. From the technical standpoint, our result
consists in describing the entire spectrum of the trans-
fer-matrix Hamiltonian, whose zero mode was studied
in [10]. In this language, the Lyapunov exponent is
determined by the energy of the first excited state. The
developed theory allows calculating any correlation
functions for a non-FT on infinite, semi-infinite, and
finite time intervals.
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Fig. 2. (Color online) Lyapunov exponent for a non-falling
trajectory versus the driving strength in units of the param-

eter oc/(o3: the dotted line shows the linear part of the
asymptotic form for small o, and the dashed line shows the

first three terms of expansion (4) for large (x/(o3.

‘We show that the Lyapunov exponent in the Whit-
ney problem with white noise driving (2) can be writ-
ten as

A = g(0/’), (3)
where the function g(x) has the asymptotic behavior

+3 —£x2+..., x <1,
g(x) = 8 1024 %)

0.66x"° +0.26 +0.30x "° ..., x>1.

In the absence of driving (v = 0), the Lyapunov expo-
nent A = @ is determined by the exponential instability
of the trajectories near the upper pendulum position.

For weak driving (o./ o < 1), the typical non-FT angle

is of the order 6 ~ (0/’)""? [10], and the nonlinearity
of Eq. (1) leads to an increase in the Lyapunov expo-
nent, which can be expanded in an asymptotic series in

powers of the small parameter 0c/c03. Finally, under
strong driving (oc/m3 > 1), the Lyapunov exponent

reaches the limiting value A = 0.660;°. We show the
numerically found dependence of the Lyapunov expo-

nent on o/e in Fig. 2.

2. According to the approach developed in [10], the
statistical properties of a non-FT are expressed in
terms of the two-component “wavefunction”

‘i’(@, p) = (P, <I>)T, whose evolution is governed by the
imaginary-time Schrodinger equation with the corre-
sponding transfer-matrix Hamiltonian:

o(Y)_ oY (L -1
slal ol woliZ) o
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where L is the Fokker—Planck operator for the Kram-
ers problem [15],

L = poy + o’ sin 00, — o.cos’ 682, (6)
and the potential V, has the form
V, = - cosf — 0.sin 260 ,. (7)

In [10], we studied the one-point correlation func-
tion of the NFT on the infinite time interval, which is

determined by the zero mode ‘i’o of the Hamiltonian
€. Finding the zero mode is significantly simplified
due to the presence of the Becchi—Rouet—Stora—
Tuytin (BRST) symmetry of the action in the Parisi—
Sourlas representation of stochastic dynamics [13],

which allows expressing both components of ‘i‘(ﬂ, D)
in terms of a scalar superpotential y(6, p) via

¥Y=0,y, ®=-dgy. ®)

The time evolution of y is determined by the Fokker—
Planck operator L:

oy

— =—Ly. 9

o | )]
However, reduction (8) works neither for calculating
multi-time correlation functions of the NFT nor for
describing the statistics of a non-FT on bounded
intervals. In the former case, the BRST symmetry is
broken by the operators of physically observable quan-
tities acting identically on the wavefunction compo-
nents ¥ and ®. In the latter case, the BRST symmetry
is broken by the BRST-asymmetric initial condition at
the boundary of the interval (see Eq. (10) below). In
both cases, to describe the non-FT statistics, one must
work with the two-components wavefunction (¥, ®)
and understand the properties of the Hamiltonian 7€.

We start with discussing the initial condition for the
wavefunction at the boundary of an interval. To ensure
that the non-FT is unique, we must fix the value of 6
at the boundary. (Generally speaking, one can fix the

value of § or even a linear combination of © and 6, but
for simplicity, we assume that the angle is given.) By

construction, the wavefunction ¥ is closely related to
the partition function of the supersymmetric func-
tional integral [10]. Right at the boundary, it cannot
contain Grassmann variables, which leads to the com-
ponent @ vanishing. Hence, the wavefunction at the
interval boundary with the fixed value 6 = 6, has the
form

© . (10)
Consider the boundary value problem in the inter-
val [T} ,7Tx] with the boundary conditions 6(z; ) = 6,

and O(#z) = 0z. The essence of the reduction of the
Parisi—Sourlas integral to the quantum mechanics (5)

GO = [0)_15(9 - 90)].

STEPANOYV, SKVORTSOV

is that the correlation function (O, (¢,)0O,(t,)....) of phys-

ical quantities O; at the instants 7, (#, < ¢, <...) can be
represented as the matrix element

PY...0yt)e 0 )e TPy, (1)

where the scalar product of two wavefunctions is
defined as [10]

() = [ d0dp W6, p)' (6, —p)+ B(6, p)¥'(0,~p)]
(12)
In [10], we studied the instantaneous joint distribution
function P(0, p) of the angle and velocity on the NFT
corresponding to the operator O = &(6 — 6,)3(p — p,)-
Replacing \%L)R with the zero mode and using Eq. (8),

one can express P(0, p) in terms of the Poisson bracket
of the superpotential y:

P(®, p) = {w(6, p), W(®,—p)o - (13)

Both the Hamiltonian in Eq. (5) and the Fokker—
Planck operator (6) are non-Hermitian. Generally
speaking, such operators can lack a complete system of
eigenfunctions. However, it is known that in the pres-
ence of friction the Fokker—Planck operator can be
diagonalized [ 15], which makes it possible to construct
a system of biorthogonal eigenfunctions and work with
them practically as with eigenfunctions of a Hermitian
operator [16]. However, there is no friction in our
case, and we should therefore expect that the opera-
tors # and L reduce to the Jordan normal form. This
results not in a simple exponential decay of correlators
ast — oo but in the appearance of additional powers of
time (e.g., as seen in Eq. (30)).

3. To illustrate the developed approach, we con-

sider the case of a weak noise (oc/oJ3 < 1) in detail,
where the Jordan structure of the operators # and L
can be studied analytically. We start with the Fokker—
Planck operator. In the considered limit, the deviation
of the pendulum from the vertical is small (0 < 1), and
the operator (6) can be replaced with

L = pdg + 09, — 00>, (14)

The zero mode of this operator corresponding to the
NFT has the form

Vo(8, p) = erf(2)/2, (15)

where we introduce “holomorphic” and “antiholo-
morphic” coordinates with different signs of the
momentum,

(16)

where K = \/®/20.. The spectrum of the operator (14)
can be found using the identity [L,d.] = ®d,, which
allows generating the eigenfunctions by consecutively
differentiating the zero mode with respect to z. We
thus find the eigenfunction of the nth excited state

(n=1,2,3,...) with the energy €, = nw:

Z=XK(p-mo), 7 =-K(p+wb),
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1 —
n :_Hn— (Ze ’
v in 1(2)

2 2
where H,(z) = (=1)"e* d"e”* /d7" is the Hermite poly-
nomial (in the physical definition). However, the
functions (0, p) thus constructed depend only on
the difference p — w6 (do not contain 7)) and therefore
do not form a complete basis. This circumstance is
related to the fact that the non-Hermitian operator (6)
can be brought to the Jordan normal form and in addi-
tion to the eigenfunction has several generalized eigen-
function corresponding to the same eigenvalue €,. It is

easy to verify that the eigenfunction y, has n — 1 gen-
eralized eigenfunctions, which we choose in the form

7)

k 2
- OV yoH, (e (18)

MY
where the index k ranges from 1 to n — 1. Together with
V,0 = V,, they form the basis of a Jordan block of
dimension # corresponding to the energy €, = nw:

L\Ifn,k = Ean,k + O‘)Wn,k—l (]9)
(to truncate the chain at the eigenfunction v, ,, we set

Wn,—l = 0) .

The constructed system of functions is complete.
An arbitrary function can be expanded in the basis vy, ,
using the orthogonality relation

<‘Ifn,k|\lfn',k'>z = (_1)n_16n,n‘6k+k'+l,n7 (20)
where the scalar product (- | -), is defined as
Wiy, = [dzdzw(@ v (7). 2N

and exchanging the arguments in one of the functions
thus agrees with the sign change for p in Eq. (12). We
note that the integration measures in Egs. (12) and

(21) are related by dzdz = 20K’d0dp.

During the evolution of the wavefunction v, ,
under the action of the operator L, other states of the
Jordan block corresponding to the same energy are
mixed into it, which leads to the appearance of powers
of ¢t on top of the exponential decay:

k m

—Lt ot (—w?)

e Wn,k =e Z ) \l’n,kfm'
m=0 M

We now turn to studying the spectral properties of
the Hamiltonian 7€ in Eq. (5). In the considered case

(22)

of weak noise, Eq. (7) gives V, = —0)2, which partitions
the state space of # into even and odd sectors with the
wavefunctions ‘i’e,o = (¥, 0¥)"
pendently with the Hamiltonians #,, = L ¥ . The

system of eigenfunctions and generalized eigenfunc-
tions of the operator L constructed above thus allows

evolving inde-
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completely describing the evolution of the doublet ¥
under the action of the Hamiltonian €.

Consider the evolution of the wavefunction (10)
away from the boundary in the limit 0(/033 <1.

Decomposing it into even and odd components, we
obtain

Iy (b
e Y =
0

® ' cosh of
sinh oz

je_US(G - 0,). (23)

To calculate the evolution of the delta function, we
expand it in the basis y,, ; :

o n—1

36 -6y) = Z ch,k\lfn,k-

n=1 k=0

(24)

The coefficients c,, can be obtained using orthogo-
nality relations (20) and the properties of Hermite
polynomials

H,(x+y) = Z[”j(zy)""‘mx) (25)

k
k=0
following from the Taylor expansion, and are given by
(2K weo)n—Zk—l
n=2k-1""

The evolution of the delta function in Eq. (23) follows
from expansion (24) and relations (22). The memory

o = (=1)""2xk0 (26)

of the boundary is lost in the characteristic time o'
(the inverse Lyapunov exponent). During this time,
the difference between the two components of the

wavefunction W is lost, and they both take the value
determined by the state , , with the minimum energy
61 = m:

A N 1
lime "y = ¥, = (wj KWy, 27)

1—o0

which is just the zero mode of (5) in the limit
oc/o)3 <1.

4. We show how the developed spectral theory of
the operators # and L allows systematically calculat-
ing various correlation functions of the non-FT in the
case of weak noise. The results in this section can also
be obtained directly by using the explicit expression for
the non-FT in terms of f(¢) with subsequent averaging
over Gaussian white noise (2) [10], but deriving them
using the transfer-matrix formalism is important
methodologically because it illustrates the general
scheme and allows verifying its workability.

We begin by considering the calculation of the pair
correlator for the NFT angle on the entire real axis.
Substituting the zero mode (27) into the general for-
mula (11) and taking into account that only the even
sector of the theory does contribute, we can express
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the correlator in terms of the scalar product (21) in the
z-representation as

(8(0)0(1) = (0™ Oy, o).

Using Egs. (16) and (18), we can express 0y, , in terms

of the functions y, , and y, ;. Then using the evolution
law (22), we obtain

(28)

Lo —ot Yo — (/2 + 00)y,
2K® '

Calculating the matrix element (28) as the overlap
—(L-)t

By =e (29)

between the states e Oy, and Oy, , with the help
of relations (20), we find the sought pair correlator:

(6(0)0(1)) = (")(1 + wr)e™, (30)
where, as obtained in [10],
(0% = 020 (31)

The appearance on the background e™ of a contribu-
tion linearly increasing with time is related to exci-

tation of the states y,, and y,, corresponding to the
Jordan block of dimension 2.

In a similar way one can calculate more compli-
cated correlators of the NFT. For example,

(0%(0)0%(r)) = (8°)° [1 +2(1 + mt)ze‘z“”] (32)
Formally, the operator 6” here applied to Vo excites
the Jordan triplet y;,, W3, W;,, Which leads to the

appearance of terms up to ¢* on the background of the
exponential decay. But the structure of the corre-
lator (32) is related to the Gaussian statistics of 6 on
the NFT [10], which allows expressing it in terms of
pair correlator (30) using the Wick theorem. General-
izing the developed formalism to multipoint correla-
tors is also straightforward.

As the next example, we consider the calculation of
the average angle (6(7))q, for the non-FT on the semi-
infinite time interval £ > 0 with the boundary condi-
tion 6(0) =6,. According to Eq. (11), the average
angle is given by the matrix element (6(7))y =

<‘i’0|9e_%’|‘i‘f,?> . Itis easiest to calculate by convoluting
Eq. (29) with the wavefunction (10) at the boundary.
Integrating over the momentum, we see that the con-

2
tribution from y,, = 2ze™ /«/E disappears because it
isodd in z, and we obtain the simple exponential decay

(8(1))e, = Bpe ™" (33)
One can derive the same expression differently by cal-
culating the matrix element 6 between the zero mode

y, and evolved boundary wavefunction (23). Such
matrix elements are nonzero only with the Jordan

STEPANOYV, SKVORTSOV

doublet v, , and y, ;. However, according to Eq. (26),
y,, is not included in the expansion of the delta func-

tion, while y,  is an eigenfunction and does not gen-
erate a linear term during evolution. As a result, we
again come to Eq. (33).

The comparison of Egs. (30) and (33) shows that
despite the presence of the additional factor w¢ in
Eq. (30), the Lyapunov exponent can be standardly
determined from either of the correlators at large
times:

A = i 2 10BOB0) _

1o ot

li
t—oo a

5. We now proceed to calculating the Lyapunov
exponent for the non-FT for arbitrary values of the

- 0 ln(Gt(z‘))90 ()

parameter 0./ o . The Lyapunov exponent, which gov-
erns the decay of the correlations at large times, is
determined by the energy of the first excited state. As
shown above, in the case of weak driving, A = ®. As

the parameter o/ 0% increases, the anharmonicity of
the pendulum leads to a deviation of A from .

For a small value of the parameter o/@ < 1, the
nonlinear terms in Eq. (6) can be taken into account
perturbatively, which allows obtaining both a correc-
tion to the eigenfunction y,, which becomes depen-
dent on the antiholomorphic coordinate 7, and a cor-
rection to the eigenvalue €,. This procedure looks
especially simple for the first excited state, which is
nondegenerate and has no generalized eigenfunctions.
For this, we represent the eigenfunction and the corre-
sponding energy as power series in the small parameter

X =0/

v, =1+ Az Dx + h(zD)x +..Je ",
e =01+1vx+ 72x2 +..),

where 4,(z,7) is a polynomial of a degree not exceed-
ing 4m. Substituting these expressions in the equation
Ly, = €y, and solving sequentially in each order in x,
we can calculate the first few polynomials 4,,(z,7) and
the coefficients v,,. The result for €, defining the Lya-
punov exponent is given in Eq. (4).

A similar approach allows also finding corrections
to the zero mode (15) of the superpotential y,, in pow-

ers of o/ . As anticipated from the supersymmetry of
the theory, its energy remains zero. The found correc-
tions allow obtaining an analytic expansion for the
one-point statistics of the NFT, calculated nume-
rically in [10]. In particular, they allow refining for-

mula (31) for (8°),

@y =x_13,2, 26989 5

35
2 16 12288 >
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Fig. 3. (Color online) First excited state y(6, p) of the operator (6) for three values of the parameter o,/ (1)3 =0.1, 1, 10. The wave-

function is normalized to the maximum value.

and describing the non-Gaussianity of the distribution
function P(0) characterized by the fourth cumulant

(8% = (8" - 3(6")™:

64725

(0 =241 2004
256 8192

Note that the difference from the normal distribution

(36)

measured by the kurtosis ((6*))/(6*)* occurs only in

the first order in x = 0,/ . A negative value of ((8*))
is related to suppression of the tails of P(0) due to the
finiteness of the interval (-mt/2, t/2).

In the case of an arbitrary noise strength, the
excited states of operator (6) can be constructed only
numerically. To determine the Lyapunov exponent
A = €, we must find the first excited state by solving
the equation Ly = €,y with the boundary conditions

Y(m/2, p < 0) = y(6,—) =0, (37a)

Y(=1/2,p > 0) = y(6,°0) = 0. (37b)

These boundary conditions are similar to the bound-
ary conditions for the zero mode of the superpotential
derived in [10], with the only difference that in the part
of the boundary where the wavefunction is specified,
its value is zero and not £1/2.

In Fig. 3, we show the first excited state determined
numerically for various values of the parameter o/ .

For small o/, the function y,(0, p) is close to the
Gaussian , ((z), slightly increasing near 6 = £1/2. As

o/@ increases, the maximum of y,(0, p) near the
boundaries of the interval become more pronounced,

and at oc/co3 —> oo, the first mode has two humps
localized near the boundaries. In Fig. 2, we plot the
energy of the first mode (which determines the Lya-

JETP LETTERS Vol. 112
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punov exponent) as a function of the parameter o/ .

For small oc/m3, the numerical calculation agrees with
Eq. (4) obtained using the perturbation theory up to

the values o/ ® =~ 0.25. For larger o/ 0)3, the Lya-
punov exponent in units of ® can be expanded in pow-

ers of (0/@’)”"* with the leading term A = 0.660."”.

In conclusion, we note that the developed theory is
a generalization of the supersymmetric approach pro-
posed in [10] to the case of a non-FT on finite time
intervals and to multipoint correlation functions. The
suggested classification of the excited states of the
transfer-matrix Hamiltonian completes the construc-
tion of the theory of the statistical properties of a non-
FT in the Whitney problem with random short-range
driving. The developed formalism allows finding any
correlation functions on a non-FT by solving partial
differential equations of the Fokker—Planck type with
specific boundary conditions.
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