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Abstract – Isolated Majorana fermion states can be produced at the boundary of a topological
superconductor in a quasi–one-dimensional geometry. If such a superconductor is connected to
a disordered quantum wire, the Majorana fermion is spread into the wire, subject to Anderson
localization. We study this effect in the limit of a thick wire with broken time-reversal and spin-
rotational symmetries. With the use of a supersymmetric nonlinear sigma model, we calculate
the average local density of states in the wire as a function of energy and of the distance from the
interface with the superconductor. Our results may be qualitatively explained by the repulsion of
states from the Majorana level and by Mott hybridization of localized states.

Copyright c© EPLA, 2014

Introduction. – Recently, search for Majorana
electron levels in solid-state systems has intensified, mo-
tivated by their potential use in quantum computing [1].
Several experimental groups reported indications of Ma-
jorana fermions in hybrid superconductor-semiconductor
systems [2–5], which further stimulated theoretical stud-
ies of Majorana fermions in superconducting proximity
structures.

One of the most promising proposals for detecting a
Majorana level is based on the resonant Andreev reflec-
tion at zero energy [6,7]. The symmetry of the supercon-
ductor leads to the universal Andreev conductance 2e2/h
in the presence of a Majorana level. Due to the topo-
logical protection, the Majorana bound state and hence
the resonance in the Andreev reflection are robust with
respect to all sorts of local perturbations including disor-
der. Although the height of the resonance peak is universal
(at low temperatures), its width is determined by the over-
lap of the Majorana wave function with electron states in
the external probe. In order to be observed, the resonance
peak should be reasonably narrow1, which implies a local-
ization of a Majorana level close to the Andreev interface.

1To be observable, the width of the resonance peak should be
smaller than the superconducting gap and larger than the experi-
mental energy resolution.

A possible experimental approach to localizing the Majo-
rana level uses a tunnel barrier provided by suitably placed
gates [2,3]. In the present paper, we suggest an alternative
possibility: suppressing the escape of the Majorana mode
by disorder-induced Anderson localization.

The effect of disorder in systems containing Majorana
fermions was a subject of several recent papers addressing
transport properties [8–11]. We complement those stud-
ies with an analysis of the average local density of states
(LDOS): this quantity provides a direct information on the
spatial profile of the Majorana mode and other electron
states.

In a disordered wire, under an assumption of quantum
coherence, the electronic states are localized [12], includ-
ing the Majorana fermion. At the same time, the LDOS
at low energies is modified, due to the level repulsion
from the Majorana state (this effect was studied in de-
tail in the zero-dimensional random-matrix limit [13,14]).
In the case of a thick quasi–one-dimensional wire with a
large number of channels, the modification of the den-
sity of states in the presence of a localized Majorana level
can be accessed with the use of a supersymmetric non-
linear sigma model [15]. This approach was developed in
ref. [16] to study the interplay of proximity and localiza-
tion effects in conventional superconductor–normal-metal
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Fig. 1: (Color online) A disordered quantum wire (N) of length
L coupled to a topological superconductor (S) at x = 0. The
star marks the location of a Majorana fermion state. This state
spreads at the localization length scale ξ into the wire and at
the superconducting coherence length (which is assumed to be
much shorter than ξ) into the superconductor.

junctions. An earlier study of the LDOS in Majorana
quantum wires using the sigma-model formalism, without
including localization effects, was performed in ref. [17].

In the present paper, we extend the calculation of
ref. [16] to the case of a hybrid system consisting of a
topological superconductor with a Majorana level and a
wire with both time-reversal and spin symmetries bro-
ken, see fig. 1. We find the spatial structure of the local-
ized Majorana state and the modification of the LDOS at
low energies due to the level repulsion from the Majorana
level. The localization of the Majorana level is similar to
the localization of states in the bulk of the wire, and its
level-repulsion effect extends to the Mott length scale. We
further explain our results in terms of the Mott hybridiza-
tion of localized states [18–21] and compare our findings
to those in ref. [16].

Model. – We consider a junction between a topologi-
cal superconductor and a normal disordered wire schemat-
ically shown in fig. 1. The wire has length L and the
number of channels N ≫ 1. Both the spin-rotational and
time-reversal symmetry are assumed to be broken in the
wire (at the length scales shorter than all other length
scales of the theory). It therefore belongs to the symmetry
class A (in Cartan notation [22]) and to the model IIb in
Efetov’s classifcation [23]. The superconductor is also as-
sumed to have both time-reversal and spin-rotational sym-
metry broken and to be in a topological phase [24]. This
superconducting symmetry class is usually denoted as B,
D or BD [13,14,22,25]. We prefer to call this symmetry
class B to emphasize the presence of a Majorana state at
the boundary. An example of a microscopic Hamiltonian
leading to such a symmetry can be found in refs. [26,27].

We assume quantum coherence in the wire, which
leads to Anderson localization at the localization length
ξ = 2πνAD (here D is the diffusion coefficient in the
wire, ν is the density of states, and A is the wire cross-
section). Localization in the wire defines the energy scale
Δξ = D/ξ2 (of the order of the level spacing and of the
Thouless energy at the length ξ). In short wires (L ≪ ξ),
another energy scale comes into play: the level spacing in
the wire, δ = (2νAL)−1 (see footnote 2). The localization

2The 1/2 factor in the definition of the level spacing δ takes into
account the doubling of levels due to Andreev reflections and is in-
cluded for consistency of notations with refs. [14,16,25].

of the Majorana fermion and the related level-repulsion
effects occur at distances x � ξ from the interface (up
to logarithmic corrections, see the discussion of the Mott
length (12) below) and at energies E � max(Δξ, δ) around
the Fermi level, as in the non-topological case [16]. We
further assume these conditions on x and E.

The interface between such a superconductor and a wire
may be described in terms of a scattering matrix 2N×2N ,
which involves both normal and Andreev reflections. We
assume a large total Andreev conductance. We also as-
sume that the gap in the superconducting part of the junc-
tion is much larger than the energy scales Δξ and δ. Then,
within the window of energies considered, we may neglect
the energy dependence of the Andreev scattering matrix
(the limit of a broad “Majorana resonance” [6,7]). The
symmetry properties of such a scattering matrix are dis-
cussed in detail in refs. [8,11,24]. Similarly to the results of
ref. [16], we find that the role of the Andreev interface, in
this high-transparency limit, is to fully suppress the soft
localization modes (diffusons and cooperons) incompati-
ble with the symmetry of the superconductor. At such
an interface, the boundary conditions for the supersym-
metric nonlinear sigma model describing the wire take a
particularly simple form (see the following section).

Density of states: general formalism. – Our main
object of study is the disorder-averaged local density of
states 〈ρE(x)〉 (normalized to the bulk value in the wire).
Following ref. [16], we express it as an expectation value
in a supersymmetric nonlinear sigma model [23],

〈ρE(x)〉 =
1

4
Re

∫

str (kΛQ(x)) e−S[Q]DQ. (1)

Here Q is the supersymmetric 4×4 matrix acting in the
product of the Fermi-Bose (FB) and retarded-advanced
(RA) two-dimensional spaces and subject to the constraint
Q2 = 1 (this space of Q matrices corresponds to the sym-
metry class A [22]). The matrix Λ = σRA

z is the metallic
saddle point of the sigma model, and the supersymmetry-
breaking matrix k = σFB

z (we follow the notations of
ref. [23]). The supersymmetric action has the form

S[Q] =
πνA

4

∫ L

0

dx str
[

D(∇Q)2 + 4iEΛQ
]

. (2)

At the interface with the superconductor (at x = 0), un-
der the assumptions specified in the previous section, the
matrix Q is restricted to the symmetry class of the com-
bination of the symmetries in the wire and in the super-
conductor (class B in our case).

The one-dimensional sigma model (1) can be solved an-
alytically by mapping onto an imaginary-time quantum
mechanics on the target space of Q matrices [28]. The
relevant degrees of freedom of the Q matrix are the eigen-
values of its RR block, λF and λB [23]. The fermionic
parameter λF takes values between −1 and 1 (compact),
and the bosonic component λB between 1 and +∞ (non-
compact). At the interface with a superconductor, the
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Q matrix is reduced to that of the symmetry class B or
D (depending on the presence or absence of a Majorana
level), which constrains the FF block to two points only:
λF = ±1 [13,14,16]. As derived in ref. [16], in the case of
class D (no Majorana level), the two components of the
functional integral (1) corresponding to λF (x=0) = 1 and
λF (x=0) = −1 must be added with opposite signs. In
ref. [14], it was remarked that the difference between the
presence and absence of the Majorana mode corresponds
to reversing the relative sign between the functional inte-
grals over the two disconnected components of the space
of Q matrices. Therefore, we conclude that, in the case of
class B (with the Majorana mode), the average LDOS is
given by reversing the relative sign in eq. (29) of ref. [16]:

〈ρE(x)〉 = 1 + Re

∫

∞

1

dλB
Ψ(1, λB; x) + Ψ(−1, λB; x)

2
.

(3)
The wave function Ψ(λF , λB ; x) results from evaluation
of the functional integral (1) by the transfer-matrix tech-
nique of Efetov and Larkin [28] and is defined as [29,30]

Ψ(λF , λB; x) = e−2H̃x/ξe−2H(L−x)/ξ · 1. (4)

The Hamiltonians H̃ and H governing the evolution of the
wave function are given by

H̃ = H̃B + H̃F , H = (λB − λF )H̃(λB − λF )−1, (5)

where

H̃B = −1

2

∂

∂λB
(λ2

B − 1)
∂

∂λB
+

κ2

16
λB , (6a)

H̃F = −1

2

∂

∂λF
(1 − λ2

F )
∂

∂λF
− κ2

16
λF , (6b)

and we define κ2 = −8iE/Δξ.

Short-wire limit. – In the limit of a short wire, L ≪
min(ξ,

√

D/E), the gradient terms in the Hamiltonian (5)
may be neglected [16], and a simple calculation leads to
the well-known result for the random-matrix ensemble of
class B [14,17,31]:

〈ρE(x)〉 = 1 − sin(2πE/δ)

(2πE/δ)
+ δ (E/δ) . (7)

The Majorana level reveals itself as a delta-function term
in the density of states. The integral weight of this delta
peak equals 1/2, which reflects the Majorana nature of
this electronic level.

Semi-infinite–wire limit. – In the limit of a semi-
infinite wire, at low energies (E ≪ Δξ), the calculation can
be performed using the technique developed in ref. [30].
Taking the limit L → ∞ in eq. (4) results in

Ψ(λF , λB; x)L→∞ = e−2(H̃F +H̃B)x/ξ Ψ0(λF , λB), (8)

where

Ψ0(λF , λB) = I0(q) pK1(p) + qI1(q)K0(p) (9)

ρ
E

(x
)

x/ξ
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Fig. 2: (Color online) Sketch of the average LDOS 〈ρE(x)〉 in
the semi-infinite–wire limit (L → ∞) at a small finite energy E

as a function of x (thin blue curve), as given by eq. (10). Close
to the interface, it follows the profile of the Majorana mode
ΦM (x) (thick red curve). At x ∼ LM , the LDOS exhibits a
crossover given by the erf function (dashed black line).

(with p = κ
√

(λB + 1)/2 and q = κ
√

(λF + 1)/2) is the
zero mode of the Hamiltonian H found in ref. [32].

Since the bosonic and fermionic degrees of freedom sep-
arate, the calculation may be further performed pertur-
batively in the fermionic sector (in the limit of E ≪ Δξ)

and by expanding in the basis of eigenstates of H̃B in the
bosonic sector [30]. The details of the calculation can be
found in the Appendix. The result has the form

〈ρE(x)〉 = ΦM (x) +
1

2

[

1 + erf

(

x − LM

2
√

x ξ

)]

+ ΦM (x)π δ(E/Δξ). (10)

The last δ term in eq. (10) corresponds to the localized
Majorana mode whose profile is given by

ΦM (x) = 2π

∫

∞

0

k dk
sinh πk

cosh2 πk
(k2 + 1/4)e−(x/ξ)(k2+1/4),

(11)
and

LM = 2ξ ln(Δξ/E) (12)

is the Mott length scale [18]. Note that the profile of the
Majorana level ΦM (x) contributes not only to the delta
peak at zero energy, but also to the background LDOS at
small finite energies (see our discussion of Mott hybridiza-
tion below). The function 〈ρE(x)〉 is plotted in fig. 2.

As in the short-wire limit, one can verify that the inte-
gral weight of the Majorana delta peak in the LDOS (10)
equals 1/2. The average intensity of the Majorana mode
decays away from the interface at the length scale 4ξ,
similar to the statistics of a single localized wave func-
tion [28,30,33]. On general grounds, we believe that
the statistics of the tails of this localized state is log-
normal [21] with the typical Majorana state decaying at
the length scale ξ. Note however that the exact form of
the average intensity of the Majorana state (11) differs
from the two-point correlation function of the intensity
of a single localized state (eq. (75) of ref. [30], see also
refs. [28,33]).

We can also remark a similarity of the LDOS pro-
file (10) to the two-point LDOS correlation function in
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Fig. 3: (Color online) A schematic representation of the three
localized states whose hybridization is responsible for 〈ρE(x)〉
at small, but finite energies E.

the quasi–one-dimensional wire [20,21,30]. Namely, at low
energies, it consists of two parts: the “short-range” part
localized at the length scale ξ and proportional to the
single-particle statistics [ΦM (x) in our case] and the “long-
range” part at the length scale LM . As in the case of a
quasi–one-dimensional wire, this structure may be easily
understood in terms of a Mott hybridization of localized
states [18–21]. The difference from the two-point corre-
lation case considered in ref. [21] is that now three states
hybridize: the Majorana state and the pair of particle-hole
(Bogoliubov–de-Gennes) symmetric [22,25] states at ener-
gies ε and −ε (see fig. 3). The hybridization Hamiltonian
involving these three states has the form

Hhybrid =

⎛

⎜

⎝

ε J 0

J∗ 0 J∗

0 J −ε

⎞

⎟

⎠
, (13)

where the typical value of the hybridization matrix ele-
ment J is Δξe

−x/(2ξ) (note that there is no direct hy-
bridization between the state at energy ε and its image
in the symmetry class B [25]). Following the argument of
ref. [21], we conclude that this hybridization mechanism
produces a crossover between ρE(x) = 0 and ρE(x) = 1
at x = LM , in agreement with the result (10) of our cal-
culation. Following the same argument, the hybridized
states reproduce the Majorana wave function at x � ξ,
and therefore 〈ρE(x)〉 must be proportional to the aver-
age intensity of the Majorana state ΦM (x) in this region
of x, again in agreement with eq. (10).

It is instructive to compare this situation with that in
superconductor–normal-metal (SN) junctions in the sym-
metry classes C and D considered in ref. [16]. In class
D, there is no hybridization between any state and its
particle-hole mirror image [25]. Since there is no state
at E = 0, this implies no repulsion from the Fermi level,
and 〈ρE(x)〉 is enhanced at low energies at x � ξ (with
〈ρE→0(0)〉 = 3). In class C, the particle-hole mirror im-
ages hybridize and repel each other, and therefore 〈ρE(x)〉
is suppressed at x < LM/2 (as opposed to x < LM in
class B), since hybridization involves an electron (hole)
propagating to the SN interface and back. The compari-
son of the three classes is presented in table 1.

We remark that finite limits 〈ρE→0(x)〉 in classes B and
D reported in table 1 are only achieved if the limit L → ∞

Table 1: Level repulsion and Mott hybridization in normal-
metal–superconductor junctions of the symmetry classes B, D,
and C in the limit of a semi-infinite wire L → ∞.

Class Majorana α Hybrid. length 〈ρE→0(0)〉
B Yes 2 2ξ ln(Δξ/E) 1
D No 0 — 3
C No 2 ξ ln(Δξ/E) 0

is taken before E → 0. If one considers the opposite order
of limits, (i.e., E → 0 at a finite L), then the repulsion
from the Fermi level leads to 〈ρE→0(x)〉 = 0. In fact, in a
finite wire, the hybridization is only possible at distances
x < L, which sets the energy scale Eg ∼ Δξe

−L/(2ξ) in
class B (and Eg ∼ Δξe

−L/ξ in class C) as the typical mini-
mum energy of hybridized states. Below this energy scale,
the density of states is suppressed, which is reminiscent
of a minigap in conventional SN junctions [34]. In a finite
wire, at very small energies (E ≪ Eg), the LDOS scales as
〈ρE→0(x)〉 ∝ |E|α. A finite value of α indicates repulsion
either from the Majorana state or from the Bogoliubov–de-
Gennes mirror image: it equals the number of independent
degrees of freedom in the possible hybridization matrix el-
ement between the two repelling states. The values of α
are included in table 1 for completeness. They are also
known from the random matrix theory for all symmetry
classes (refs. [14,25,31] and references therein).

Discussion. – To summarize, we have analytically
solved the problem of Anderson localization of a Majorana
fermion in a wire with time-reversal and spin-rotational
symmetries broken. We find that the Majorana level
gets localized in a way qualitatively similar to other
electronic states and contributes to the repulsion of
other electron levels from the Fermi energy near the SN
interface. We expect that, at a qualitative level, these
properties are universal: they do not depend on the
details of geometry and on the symmetry class of the
wire. Moreover, since the statistics of the envelope of a
single localized wave function in quasi–one-dimensional
geometry is independent of the symmetry class [35] and
since the behavior at the Mott length scale is determined
by the hybridization physics [18–21], we believe that our
results (10) and (11) are universally valid also for wires
with orthogonal and symplectic (with an even number of
channels [36]) symmetries, as long as a Majorana level is
present at the SN interface.

Our results may be useful for possible qubit designs
involving Majorana fermions localized by disorder. The
intensity ΦM (x) of the Majorana state may be probed by
tunneling experiments (while the maximum of the tunnel-
ing peak at zero temperature must equal 2e2/h, accord-
ing to ref. [6], its width and temperature smearing are
sensitive to the amplitude ΦM (x) [7]). Also, the profile
of ΦM (x) would be relevant for hybridization of Majorana
fermions, if two of them are placed at the opposite ends of
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the wire (similarly to the case of a superconducting wire
considered in ref. [37]).
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Appendix: details of the calculation. – Here we
provide the details of the calculation leading to the re-
sults (10) and (11) for the LDOS in the infinite-wire limit.
The calculation extensively uses the techniques developed
in ref. [30]. In the fermionic sector, the calculation is done
perturbatively, while in the bosonic sector we use the Pois-
son summation formula involving the scattering matrix for
the Hamiltonian H̃B (eq. (6a)). It will be convenient to
perform the calculation in the variables p and q introduced
below eq. (9). We also introduce the dimensionless coordi-
nate t = x/ξ. The main idea of the calculation is to keep
track of the relevant orders in κ.

The starting point of the calculation are eqs. (3), (8),
and (9). The Hamiltonians (6a) and (6b) in the variables
p and q read

H̃B =
1

8

[

1

p

∂

∂p
p(κ2 − p2)

∂

∂p
+ p2 − κ2

2

]

, (A.1)

H̃F =
1

8

[

1

q

∂

∂q
q(q2 − κ2)

∂

∂q
− q2 +

κ2

2

]

. (A.2)

In the fermionic sector, we expand the wave function in
powers of κ and q:

Ψ(q, p; t) = ψ0(p, t) + q2ψ1(p, t) + κ2ψ2(p, t) + . . . , (A.3)

which, upon substitution into eq. (3), results in

〈ρE(x)〉 = 1 +
1

2
Re

∫

dλB

[

2ψ0(p, t)

+ κ2ψ1(p, t) + 2κ2ψ2(p, t) + . . .
]

. (A.4)

The Hamiltonian H̃F acts as

H̃F

[

ψ0 + q2ψ1 + κ2ψ2

]

=

(q2 − κ2/2)
[

−ψ0/8 + ψ1

]

+ o(q2, κ2), (A.5)

which allows us to represent it by a finite matrix in the
basis (1, q2, κ2):

H̃F

⎛

⎜

⎝

ψ0

ψ1

ψ2

⎞

⎟

⎠
=

⎛

⎜

⎝

0 0 0

−1/8 1 0

1/16 −1/2 0

⎞

⎟

⎠

⎛

⎜

⎝

ψ0

ψ1

ψ2

⎞

⎟

⎠
+ o(q2, κ2).

(A.6)
Exponentiating this matrix, we obtain

e−2H̃F t
[

ψ0 + q2ψ1 + κ2ψ2

]

=

ψ0 + q2

[

1 − e−2t

8
ψ0 + e−2tψ1

]

+ κ2

[

e−2t − 1

16
ψ0 +

1 − e−2t

2
ψ1 + ψ2

]

+ o(q2, κ2). (A.7)

Applying this operation to the zero-mode wave function

Ψ0(q, p) = pK1(p)+ q2

(

K0(p)

2
+

pK1(p)

4

)

+ o(q2) (A.8)

yields

e−2H̃F tΨ0(q, p) = pK1(p)

+ q2

[

1 + e−2t

8
pK1(p) +

e−2t

2
K0(p)

]

+ κ2

[

1 − e−2t

16
pK1(p)+

1 − e−2t

4
K0(p)

]

+o(q2, κ2). (A.9)

Inserting this result into eq. (A.4), we obtain

〈ρE(x)〉 = 1 + Re

∫

dλB e−2H̃Bt
(

pK1(p)

+ (κ2/8)
[

pK1(p) + 2K0(p)
]

)

. (A.10)

This equation is valid up to corrections of order o(κ2) in
the integrand, which results in corrections of order o(1)
for 〈ρE(x)〉 (the integration over λB extends to λB ∼ κ−2

and thus brings in a large κ−2 factor). It remains now to
calculate the evolution with respect to the bosonic part of
the Hamiltonian H̃B.

We further calculate the following two matrix elements:

{

M1

M0

}

=

∫

dλB e−2H̃Bt

{

pK1(p)

K0(p)

}

(A.11)

using the method developed in ref. [30]. From eq. (A.10)
we see that the integral involving pK1(p) should be calcu-
lated up to two leading terms in small energy expansion,
O(1/κ2) and O(1), while for the second integral it suffices
to extract only the main O(1/κ2) asymptotics.

We use the general expansion of the evolution operator
in the eigenfunctions of H̃B

{

M1

M0

}

=
∑

k

〈1|φk〉
〈φk|φk〉e−2Ekt

{ 〈φk|pK1(p)〉
〈φk|K0(p)〉

}

(A.12)

and pick all the necessary ingredients from ref. [30]:

〈φk|pK1(p)〉 =
π

κ coshπk

[

1 + 4k2 − κ2

2
+ O(κ4)

]

, (A.13)

〈φk|K0(p)〉 =
2π

κ coshπk

[

1 + O(κ4)
]

, (A.14)

〈φk|φk〉 = − i

2π
coth πk

∂ lnS(k)

∂k

[

1

k
+ O(κ4)

]

, (A.15)

∑

k

· · · = − i

2π

+∞
∑

n=−∞

∫

∞

0

dk Sn(k)
∂ ln S(k)

∂k
· · · , (A.16)

S(k) =

(

κ2

4

)−2ik [

Γ(2ik)Γ(1/2 − ik)

Γ(−2ik)Γ(1/2 + ik)

]2
[

1 + O(κ4)
]

,

(A.17)

Ek = 1/8 + k2/2 + O(κ4). (A.18)
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The only missing piece is 〈1|φk〉. It can be easily computed
along the lines of Appendix C of ref. [30]:

〈1|φk〉 =

∫

dλB φk = (4/κ)
[

1 + O(κ4)
]

. (A.19)

Putting everything together, we obtain

M1 = 4π

∫

∞

0

k dk
sinhπk

cosh2 πk

+∞
∑

n=−∞

Sn(k)

×
[

(1+4k2)/κ2−1/2+O(κ2)
]

e−t(k2+1/4). (A.20)

The term with n = 0 rapidly converges as an integral over
real k, while n = ±1 terms oscillate and are determined
by the competition between the pole at k = i/2 and of
the saddle point k∗ = itM/2t with tM = 4 ln(2/κ). The
pole contribution is dominant at t ≪ tM and yields −1.
The saddle point k∗ becomes important at t ∼ tM and
provides a step-like “erf term”. The result is

M1 = −1

2
+

1

2
erf

(

t − tM

2
√

t

)

+ 4π

∫

∞

0

k dk
sinhπk

cosh2 πk

[

1+4k2

κ2
− 1

2

]

e−t(k2+1/4)

+ O(κ2). (A.21)

Evolution of K0(p) is easier since we need only the lead-
ing term. Setting n = 0, we find

M0 =
8π

κ2

∫

∞

0

k dk
sinhπk

cosh2 πk
e−t(k2+1/4) + O(1). (A.22)

The results (10) and (11) for the LDOS are now ob-
tained in a straightforward way by substituting the inte-
grals (A.21) and (A.22) into eq. (A.10). The Majorana
delta peak arises from Re(1/κ2) = (π/8)δ(E/Δξ).
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