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We develop a theory for the plasmon spectrum in dirty superconductors across the entire temper-
ature range. Starting with the microscopic Keldysh sigma model description, we link the plasmon
dispersion ω(q) to the optical conductivity σ(ω, T ) of a superconductor, which requires analytical
continuation to the lower half-plane of complex frequency. This approach reveals a discontinuity
at the superconducting transition: a jump in both the real and imaginary parts of ω(q) at Tc. For
any temperature below Tc, the plasmon dispersion terminates at a critical wave vector qc(T ) where
plasmons remains undamped, with ω[qc(T )] ≈ 2∆(0). Plasmons significantly attenuate only within
a narrow 5% temperature window near Tc, with the propagating mode recovering at large q.

I. INTRODUCTION

Collective excitations in superconductors have been
the subject of intense theoretical and experimental study
for decades [1–11]. The interplay between Coulomb inter-
actions and fluctuations of the complex superconducting
order parameter gives rise to a variety of subgap modes,
such as plasmons [6], the amplitude (Schmid-Higgs, SH)
mode [2], and the Carlson-Goldman (CG) mode [3]. The
dispersion and attenuation of these collective modes are
governed by nonequilibrium quasiparticle dynamics, and
as such, are highly sensitive to the level of disorder.

The CG mode is characterized by synchronized oscil-
lations of the normal and supercurrent, preventing the
accumulation of space charge. This mode exists only
in a close vicinity of the critical temperature, Tc, and
exhibits a linear dispersion relation ω(q) [3, 6, 8]. The
recent revival of interest in the amplitude SH mode was
triggered by its experimental observation using ultrafast
terahertz (THz) spectroscopy [12–14]. The SH mode can
be generated by electromagnetic radiation either through
the application of a finite dc supercurrent [7, 15, 16] or
as a nonlinear response [17].

The spectrum of plasmon excitation in low-
dimensional superconductors is known in two limits.
Near Tc, plasmons are underdamped only well below
the gap [6, 8]. At low temperatures, they propagate as
charge oscillations in a distributed LC circuit formed
by the kinetic inductance of the superconductor and its
momentum-dependent effective capacitance. In super-
conducting nanowire singe photon detectors (SNSPDs)
[18–20], low-temperature plasmons with a linear disper-
sion can be used to access a particular point through a
delay time technique [21, 22].

In two-dimensional (2D) normal electron systems, ex-
perimental observation of the plasmon resonance [23–25]
became possible through advances in fabricating high-
mobility heterostructures. These experiments confirmed
the theoretically predicted dispersion relation for a clean
Fermi gas: ω2

p(q) = n2Dq
2V0(q)/m, where n2D is the 2D

electron concentration, V0(q) is the Coulomb potential,
and m is the electron mass. Detecting narrow-linewidth

plasmons requires extremely pure samples, where the mo-
mentum relaxation rate, τ−1, is very low. In the op-
posite limit of strong impurity scattering, ωp(q)τ ≪ 1,
the normal-metal plasmon becomes overdamped, with a
purely relaxational dispersion

ω(q) = −iγn(q). (1)

The momentum-dependent attenuation rate is given by

γn(q) = 2νDq2V0(q), (2)

where ν is the density of states at the Fermi energy per
one spin projection and D is the diffusion coefficient.
Although dirty normal metals hold little interest for

plasmonic applications, disorder is inherent to most ma-
terials used in contemporary superconducting electronics,
such as SNSPDs and quantum phase-slip devices [26, 27].
Their core element is a very disordered superconduct-
ing film (NbN and similar compounds), approaching the
metal-insulator transition. This presents a challenge for
systematically mapping the plasmon dispersion in dirty
superconductors, particularly in understanding how the
spectrum evolves from the overdamped regime above Tc

[Eq. (1)] to the non-decaying oscillations at absolute zero.
In this paper we develop a microscopic approach for

studying the plasmon mode in dirty low-dimensional su-
perconductors across the entire temperature range below
Tc. Starting from the Keldysh sigma model for disordered
superconductors [28], we derive the coupled equations of
motion for the electric potential and the phase of the
order parameter, bosonic degrees of freedom responsible
for charge excitations. In the limit of small momenta, the
plasmon dispersion ω(q) satisfies a nonlinear equation

ω = −i
σ(ω, T )

σ0
γn(q), (3)

where σ(ω, T ) is the complex optical conductivity of a su-
perconductor [29], and σ0 = 2e2νD is the Drude conduc-
tivity in the normal state (we work in the system of units
with ℏ = 1). The spectral equation (3) defines a com-
plex function ω(q) with the imaginary part Imω(q) < 0
responsible for the plasmon attenuation.
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FIG. 1. Real (positive, solid) and imaginary (negative,
dashed) parts of the plasmon dispersion ω(q) as a function of
γn(q)/∆(0), for temperatures T/Tc = 0, 0.7, 0.85, 0.95, and
1 (just below the transition). For a given T , the spectrum
terminates at a finite wave vector qc(T ), where plasmon os-
cillations are undamped with frequency ωc(T ). In the normal
state at T > Tc, plasmons are overdamped, ω(q) = −iγn(q)
(dotted line in the lower left corner).

While Eq. (3) has been derived previously under var-
ious approximations [6, 8], its rigorous solution requires
the analytic continuation of the Mattis-Bardeen conduc-
tivity, σ(ω, T ), into the lower half-plane Imω < 0. To
the best of our knowledge, this essential step has never
been performed previously. As a result, the plasmon dis-
persion was available only in the vicinity of Tc and at
low frequencies, ω ≪ ∆(T ), where ∆(T ) is the supercon-
ducting gap.

The central difficulty in solving the spectral equation
(3) lies in evaluating σ(ω, T ) in the lower half-plane of
complex ω. This is non-trivial because the standard def-
inition of the optical conductivity [29–31] involves an
integral over the real energy axis ε, which becomes ill-
defined upon analytic continuation. The reason is that
for Imω < 0, the branch cuts of the quasiparticle Green’s
functions cross the real ε-axis. Thus, to analytically con-
tinue σ(ω, T ) into the lower half-plane, one must perform
a deformation the integration contour over ε to avoid
these branch cuts.

One of the most striking consequences of the men-
tioned contour deformation is discontinuity of the plas-
mon dispersion ω(q) at the transition: both Reω(q) and
Imω(q) exhibit jumps as T is lowered below Tc. For a
given momentum q, the attenuation rate, − Imω(q), just
below the transition (at Tc − 0) is smaller than in the
normal state, where it is given by γn(q) [Eq. (2)]. At the
same time, Reω(q) appears abruptly below Tc.

The plasmon dispersion, both Reω(q) and Imω(q), is
presented in Fig. 1 for various temperatures, from ab-
solute zero to Tc. For each temperature, the excitation
spectrum has a termination point, qc(T ), and does not
exist for q > qc(T ). At T = 0, the undamped spectrum
extends up to γn[qc(0)] = 2∆(0), and the termination
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FIG. 2. Temperature dependence of the plasmon frequency
at the spectrum termination point, ωc(T ) (upper curve). At
T ≪ Tc, it goes exponentially close to 2∆(T ) (lower curve),
reaching the value of 1.382∆(0) at the transition. Inset:
momentum at the termination point, qc(T ), quantified by
γc(T ) = γn[qc(T )].

frequency ωc(0) = 2∆(0) coincides with the optical gap.
In this case, the plasmon dispersion at q ≪ qc(0) follows
the square-root law

ω0(q) =
√
π∆(0)γn(q). (4)

This frequency corresponds to the resonance of a dis-
tributed LC circuit, where the inductance originates from
the kinetic inertia of the Cooper pairs.
As temperature increases, the plasmon spectrum devel-

ops finite damping, shown by the dashed lines in Fig. 1.
While the plasmon attenuation rate grows with q in the
long-wavelength limit, it reaches a maximum and sub-
sequently decreases, falling to zero at the termination
point, q = qc(T ).
The behavior of the oscillation frequency at the spec-

trum termination point, ωc(T ), is shown in Fig. 2. Its
value slightly exceeds the optical gap, 2∆(T ), at low tem-
peratures, yet it remains finite at Tc. The existence of
the region between 2∆(T ) and ωc(T ) with suppressed
plasmon damping is a direct manifestation of the disper-
sion jump at the critical temperature, which itself arises
from the unique analytic structure of σ(ω) in the lower
half-plane. As a result, near Tc, plasmons which become
damped once Reω(q) reaches ∆2(T )/Tc [6, 8] can reap-
pear as propagating excitations at larger wave vectors.
This occurs when Reω(q) enters the suppressed-damping
region between 2∆(T ) and ωc(T ).
The paper is organized as follows. In Sec. II we derive

equations of motion for the electric potential and the or-
der parameter phase, which are valid for any frequency,
momentum and temperature. Analytical and numerical
results for the plasmon dispersion are obtained in Sec.
III. This Section also includes discussion of the Carlson-
Goldman mode, for completeness. The results are dis-
cussed and summarized in Sec. IV. Technical details of
the sigma-model formalism are relegated to Appendix.
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II. SPECTRAL EQUATION

A. Equation of motion for bosonic fields

Collective excitations in a superconductor involve cor-
related dynamics of two bosonic fields: a complex order
parameter ∆(r, t) = |∆(r, t)|eiφ(r,t) and a real electric po-
tential ϕ(r, t). In the absence of a dc supercurrent, the
system’s dynamics separate: the oscillations of the phase
φ(r, t) and the potential ϕ(r, t) are intrinsically coupled,
while the amplitude (Schmid-Higgs) mode evolves inde-
pendently [7]. Thus, plasmon oscillations correspond to
the combined dynamics of φ(r, t) and ϕ(r, t) governed by
the system of linear equations(

V R
)−1

ω,q

(
ϕω,q

|∆|φω,q

)
= 0. (5)

Isolating the contribution of the bare Coulomb interac-
tion V0(q), we write (V R)−1

ω,q as

(
V R
)−1

ω,q
=

(
V −1
0 (q) 0
0 0

)
+ 2νΠ(ω, q), (6)

where Π(ω, q) is the retarded polarization matrix of the
superconducting state. The latter is given by

Π(ω, q) =

(
1 0
0 −1/λ

)
+

i

4

∫
dε πR(ε, ω, q), (7)

where the element 11 of the first matrix describes static
screening, λ is the dimensionless BCS coupling constant,
and the particular form of πR(ε, ω, q) explicitly depends
on the level of disorder.

For a dirty diffusive superconductor, the matrix ele-
ments of πR(ε, ω, q) can be calculated straightforwardly
by integrating out diffusive quasiparticle degrees of free-
dom within the Keldysh sigma model formalism [28, 32],
as outlined in Appendix A. This procedure leads to the
following expressions (hereafter we use a short-hand no-
tation ε± = ε± ω/2):

πR
11 = (Fε+ − Fε−)Dε+,ε−M

RA
ε+,ε−

+ Fε−C
R
ε+,ε−M

RR
ε+,ε− − Fε+C

A
ε+,ε−M

AA
ε+,ε− , (8a)

πR
12 = −πR

21 = (Fε+ − Fε−)Dε+,ε− NRA
ε+,ε−

+ Fε−C
R
ε+,ε−N

RR
ε+,ε− − Fε+C

A
ε+,ε−N

AA
ε+,ε− , (8b)

πR
22 = −(Fε+ − Fε−)Dε+,ε−M̃

RA
ε+,ε−

− Fε−C
R
ε+,ε−M̃

RR
ε+,ε− + Fε+C

A
ε+,ε−M̃

AA
ε+,ε− . (8c)

Here Fε = tanh(ε/2T ) is related to the equilibrium Fermi
distribution function, Mα1α2

ε1ε2 = 1 − gα1
ε1 g

α2
ε2 − fα1

ε1 fα2
ε2 ,

M̃α1α2
ε1ε2 = 1+gα1

ε1 g
α2
ε2 +fα1

ε1 fα2
ε2 , Nα1α2

ε1ε2 = gα1
ε1 f

α2
ε2 −fα1

ε1 gα2
ε2 ,

and the spectral functions gε and fε have the form(
gR,A
ε

fR,A
ε

)
=

±1√
(ε± i0)2 −∆2

(
ε± i0
i∆

)
. (9)

The diffuson and cooperon propagators on top of the su-
perconducting state are given by

Dε,ε′ =
1

Dq2 + ER
ε + EA

ε′
, (10a)

Cα
ε,ε′ =

1

Dq2 + Eα
ε + Eα

ε′
, (10b)

where ER,A
ε = ∓i

√
(ε± i0)2 −∆2.

Finally, the order parameter satisfies the self-
consistency equation

∆

λ
=

1

2

∫
dεFε Im fR

ε . (11)

Writing the term 1/λ in Eq. (7) with the help of Eq. (11)
renders the energy integral for Π22(ω, q) convergent in
the ultraviolet.

B. Plasmon spectral equation

The dispersion relation ω(q) for collective excitations
is obtained from the consistency condition for the system

(5) that reads det
(
V R
)−1

ω(q),q
= 0. Using Eq. (6), we write

the spectral equation as

[2νV0(q)]
−1Π22(ω, q) + detΠ(ω, q) = 0. (12)

In its full form, Eq. (12) is analytically intractable for
arbitrary q, and its solution requires numerical methods.
A significant simplification occurs in the limit of small
momenta.
At zero momentum, Eq. (12) is satisfied automatically.

Indeed, due to the long-range character of the Coulomb
interaction [diverging V0(q) at q → 0], the first term van-
ishes. The matrix Π(ω, 0) evaluates to

Π(ω, 0) = f(ω, T )

(
1 iω/2∆

−iω/2∆ (ω/2∆)2

)
, (13)

where

f(ω, T ) =

∫ ∞

∆

dε
∆2 tanh(ε/2T )√

ε2 −∆2[ε2 − (ω/2 + i0)2]
. (14)

Since detΠ(ω, 0) = 0, Eq. (12) holds true for arbitrary
temperatures. Such a behavior is a direct manifestation
of electroneutrality. For spatially uniform oscillations,
strong Coulomb interaction enforces ϕ = φ̇/2, which
keeps the electrochemical potential constant and sup-
presses charge density generation.
Introducing the normal-state plasmon relaxation rate

γn(q) according to Eq. (2) and utilizing detΠ(ω, 0) = 0,
we can rewrite Eq. (12) in the compact and most general
form

Π22(ω, q)

γn(q)
+

detΠ(ω, q)

Dq2
= 0, (15)
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which contains both plasmon and neutral CG excita-
tions. Further analysis involves expanding Eq. (15) in
Dq2, which produces multiple terms whose relevance de-
pends on the specific mode. The ratio of the relevant
energy scales for the two modes can be estimated as
γn(q)/Dq2 = 2νV0(q), which for the bare 2D Coulomb
interaction is of the order of κ2/q ≫ 1, where κ2 is the
Thomas-Fermi screening momentum. Since these modes
are well separated in the momentum space, they can be
studied independently.

Since we are primarily interested in plasmon excita-
tions, we retain only the relevant terms in Eq. (15) for
now, postponing the discussion of the CG mode to Sec.
III C 3. To this end, we replace Π22(ω, q) by Π22(ω, 0)
given by Eq. (15), and substitute detΠ(ω, q)/Dq2 by the
leading contribution, det′ Π(ω, 0), where prime stands for
the derivative with respect to Dq2. Evaluating det′ Π
with the help of Eq. (13), we find

det′ Π(ω, 0) = f(ω, T )

[
ω2

4∆2
Π′

11 +
iω

∆
Π′

12 +Π′
22

]
. (16)

Remarkably, this weighted sum of ∂Πij/∂Dq2 at zero
momentum is expressed in terms of the ac conductivity
of a BCS superconductor, σ(ω, T ), by the relation

det′ Π(ω, 0) =
iωf(ω, T )

4∆2

σ(ω, T )

σ0
. (17)

As a result, the spectral equation for the plasmon mode
acquires an extremely simply looking form of Eq. (3).

The optical conductivity of a superconductor has been
calculated by Mattis and Bardeen [29]. We write it in
the form suggested recently in Ref. [31]:

σ(ω)

σ0
= 1 +KRA(ω) +KR(ω), (18)

where

KRA(ω) = − 1

4ω

∫
dε (Fε+ −Fε−)(1 + gRε+g

A
ε− − fR

ε+f
A
ε−),

(19a)

KR(ω) =
1

2ω

∫
dεFε−(1− gRε+g

R
ε− + fR

ε+f
R
ε−). (19b)

The representation (18)–(19) is mathematically equiva-
lent to that derived in Ref. [30], but offers distinct ad-
vantages for numerical analysis.

C. Analytic continuation to Imω < 0

Since the optical conductivity is a complex quantity,
the solution ω(q) for the spectral equation (3) is also
complex, with a negative imaginary part describing plas-
mon attenuation. This requires evaluating σ(ω, T ) as a
function of complex frequency ω in the lower half-plane.
The representation (18) is well suited for analytic contin-
uation, which can be achieved by a proper deformation

(a) (b)

(c) (d)

A

R

A

R

A

R

A

R

FIG. 3. Integration contours over ε for the conductivity con-
tributions KRA(ω) [Eq. (19a)] for real ω (a,b) and in the
lower half-plane, Imω < 0 (c,d). Dots are the branching
points ±∆±ω/2, and branch cuts are shown by dashed lines.
Crosses are the poles of Fε± . Panels (a) and (c) show the
regime ω < ∆, while panels (b) and (d) correspond to ω > ∆.

of the integration contour over ε to bypass the branching
points of the Green functions (9). For real ω, they are
located at ±∆±(ω/2+iδ), where the sign of an infinites-
imal imaginary part δ is determined by causality. It is
positive for gR, fR and negative for gA, fA, ensuring that
the branch cuts for the retarded and advanced Green’s
functions lie below and above the real axis, respectively,
as shown in Fig. 3(a,b).
When ω is shifted away from the real axis to the lower

half-plane (Imω < 0), one (for KR) or two (for KRA)
branch cuts cross the real axis. Therefore the required
contour deformation looks differently for the two terms
in Eq. (18). For the contribution KRR(ω), it suffices
to draw the contour above ±∆ − ω/2. In the case of
KRA(ω), the situation is more tricky as the branch-
ing points of the retarded (±∆ − ω/2) and advanced
(±∆+ω/2) Green functions move upward and downward,
respectively. The proper choice of the contour providing
analyticity of σ(ω) for Imω < 0 is shown in Fig. 3(c,d).

III. PLASMON DISPERSION

A. Zero temperature

We start by analyzing the general expression (3) with
the limit of zero temperature, when the optical conduc-
tivity is known exactly. The original Mattis-Bardeen pa-
per [29] and the textbook [33] give lengthy, separate ex-
pressions for Reσ(ω) and Imσ(ω). These can be simpli-
fied considerably by exploiting identities between elliptic
integrals, leading to a concise form valid on the entire
real frequency axis:

σ(ω, 0)

σ0
=

2i∆

ω
E(ω/2∆), (20)

where E is the complete elliptic integral of the second
kind, and ∆ = ∆(0).
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Substituting Eq. (20) into Eq. (3), we arrive at the
spectral equation at T = 0:

ω2 = 2∆γn(q)E(ω/2∆). (21)

As long as γn(q) ≤ 2∆, plasmons are undamped, with
the dispersion relation shown in Fig. 1. At lowest wave
vectors, γn(q) ≪ 2∆, the elliptic integral may be replaced
by E(0) = π/2, recovering the standard behavior (4).

Since Eq. (21) comprises solely analytic functions, it
can be directly evaluated for complex ω. One can eas-
ily show that for γn(q) > 2∆, this equation admits
no solutions, real or complex. Hence, the wave vec-
tor qc(0), where γn[qc(0)] = 2∆(0), is the spectrum
termination point at zero temperature: No plasmon
excitations—either damped or undamped—can propa-
gate with q > qc(0). The corresponding spectrum ter-
mination frequency ωc(0) = 2∆(0), see Fig. 2.

B. Attenuation at low temperatures

At finite temperatures, subgap plasmon modes atten-
uate due to excitations of thermal quasiparticles and the
dispersion relation ω(q) acquires a negative imaginary
part. In the low-temperatures limit (T ≪ Tc), attenu-
ation is weak and arises due to transitions between the
states with ε ≈ ∆ and ε+ω. Since the effect is exponen-
tially small, we will focus only on imaginary (dissipative)
terms in the spectral equation (21). The low-T correc-
tions δσ(ω, T ) = σ(ω, T )−σ(ω, 0) can be evaluated from
Eqs. (18) by keeping the leading asymptotics of the spec-
tral functions and diffusive modes at ε → ∆+ ω/2, and
taking into account an exponentially small deviation of
Fε from sign ε. Thereby we obtain

δσ(ω, T )

σ0
=

∆

ω

√
2π

T

ω

2∆ + ω

∆
e−∆/T

[
1− e−ω/T

]
. (22)

As a result, the right-hand side of Eq. (21) will acquire
a small imaginary part −iω[δσ(ω, T )/σ0]γn(q). In the
limit ω(q) ≪ 2∆, we obtain

ω(q) = ω0(q)− i

√
Tω0(q)

π
e−∆/T

[
1− e−ω0(q)/T

]
, (23)

where the first term is the zero-temperature plasmon dis-
persion (4), while the second term describes attenuation
due to quasiparticle excitation.

C. Vicinity of Tc

1. Discontinuity at Tc

In the normal state above Tc, the plasmon dispersion
is given by the temperature-independent overdamped ex-
pression (1). Below Tc, a finite Reω(q) emerges due
to superconducting order parameter oscillations. Rather

counterintuitively, ω(q) is discontinuous at the transition,
with Reω(q) appearing abruptly at T < Tc and |Imω(q)|
jumping to a lower value (see Figs. 1 and 7).
Such an unexpected behavior can be traced back to a

peculiar counter-motion of the gR and gA branch cuts
in the KRA(ω) contribution to the conductivity when ω
evolves to the lower half-plane, see Fig. 3(c,d). In the
limit of vanishing ∆ but finite γ, the integration con-
tour over ε is squeezed between the retarded and ad-
vanced branch cuts. Then we note that gRε+ (gAε−) takes

its normal-state value 1 (−1) everywhere in the complex
plane except for the interior SR (SA) of a narrow strip
formed by the retarded (advanced) branch cuts, where it
equals −1 (1). Though these regions, where the Green
functions differ by sign from their normal-state values,
are infinitesimally narrow at T → Tc − 0, they are re-
sponsible for the discontinuity of the plasmon dispersion
at Tc. The reason is that the integration contour has to
follow a squeezed zigzag encompassing the branch cuts,
and therefore it is its length ∝ γ rather than the width
2∆ of SR,A that is relevant. After discarding the term
fR
ε+f

A
ε− proportional to ∆2, the integrand in Eq. (19a)

contains 1+gRε+g
A
ε− , which equals 2 at the symmetric dif-

ference of SR and SA, and zero otherwise. Therefore we
obtain

KRA(ω) = − lim
∆→0

(∫ ω/2−∆

−ω/2

+

∫ ω/2

∆−ω/2

)
dε

Fε+ − Fε−

2ω

= −
∫ ω/2

−ω/2

dε
Fε+ − Fε−

ω
= −4T

ω
ln cosh

ω

2T
. (24)

Note that this result obtained in the limit ∆ → 0 is valid
for any relation between ω (provided Imω < 0) and Tc.
Expression (24) gives the jump in the plasmon disper-

sion at Tc. Just below the superconducting transition, at
T = Tc − 0, the spectrum satisfies

ω = −i

(
1− 4Tc

ω
ln cosh

ω

2Tc

)
γn(q). (25)

This equation defines ω(q)/Tc as a function of γn(q)/Tc.
The plasmon dispersion calculated from Eq. (25) is shown
in Fig. 1, where it is plotted vs. γn(q)/∆(0).
In the limit of small q and weak normal-state damping,

γn(q) ≪ Tc, plasmons at Tc − 0 are strongly damped:

ω(q) = −iγn(q) +
γ2
n(q)

2Tc
+ i

γ3
n(q)

4T 2
c

+ . . . (26a)

As q increases and eventually reaches the limit γn(q) ≫
Tc, plasmons at Tc − 0 become weakly damped:

ω(q) = 2.438Tc−8.756i
T 2
c

γn(q)
−46.21

T 3
c

γ2
n(q)

+ . . . (26b)

In the limit of large momenta, the plasmon dispersion
just below the transition saturates at a finite frequency
ωc(Tc − 0) = 2.438Tc = 1.382∆(0), setting the lower
bound for the spectrum termination frequency ωc(T ), as
shown in Fig. 2.
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FIG. 4. Detailed view near Tc of the temperature-dependent
Reω(q) (solid) and Imω(q) (dashed) for γn(q)/∆(0) = 0.02:
exact behavior (blue), numerical solution based on the ap-
proximate conductivity (29) (red), and crude estimate (30)
(black).

2. Behavior near Tc at weak damping

Here we discuss the temperature dependence of the
dispersion relation ω(q) in the experimentally relevant
weak-damping regime, γn(q) ≪ Tc. Just below Tc, the
real and imaginary parts of ω(q) given by Eq. (26a) sat-
isfy the chain of inequalities

Reω(q) ≪ |Imω(q)| ≪ Tc. (27)

Comparing these energy scales with the GL value of the
order parameter, ∆(T ) =

√
8π2/7ζ(3)

√
Tc(Tc − T ), we

see that 2∆(T ) reaches Reω at T ′ = Tc(1− τ ′) and Imω
at T ′′ = Tc(1− τ ′′), where

τ ′ =
7ζ(3)

27π2

(
γn(q)

Tc

)4

, τ ′′ =
7ζ(3)

25π2

(
γn(q)

Tc

)2

. (28)

In the considered limit of weak damping, τ ′ ≪ τ ′′, while
τ ′′ is as small as τ ′′ ≈ 10−3 already at γn(q)/Tc ≈ 0.2.
At temperatures below T ′′, the distance between the

branching points of the Green functions, 2∆(T ) exceeds
|ω|, and one can use the low-frequency (ω ≪ ∆) asymp-
totics of the Mattis-Bardeen conductivity near Tc [15]:

σ(ω, T )

σ0
= 1 +

∆

2T
log

8∆

eω
+

iπ∆2

2Tω
. (29)

This equation derived at real ω can be straightforwardly
analytically continued to Imω < 0 provided |ω| ≪ ∆.
With the conductivity (29), the spectral equation (3) can
be solved iteratively. First we neglect the logarithmic
term and get an approximate solution (τ = 1− T/Tc)

ω0(q) = −iγn(q)
1 +

√
1− τ/τ∗
2

, (30)

where

τ∗ =
7ζ(3)

24π2

γn(q)

Tc
(31)

is parametrically larger than τ ′ and τ ′′ but is still much
smaller than 1.
The temperature dependence of the first approxima-

tion (30) for γn(q)/∆(0) = 0.02 is shown in Fig. 4 (dotted
lines), capturing the fully overdamped behavior above
T∗ = (1 − τ∗)Tc. Though it qualitatively explains the
main features of the true dispersion (solid lines), the ef-
fects of the neglected logarithm (dashed lines) become
significant near T∗. These effects smear the square-root
singularity in Eq. (30), producing a finite Reω(q) for all
temperatures up to Tc. Nevertheless, the plasmon re-
mains overdamped (i. e., has a small quality factor) for
T > T∗. The logarithmic term in the conductivity (29) is
also responsible for a slightly visible maximum in Imω(q)
near T∗.
The same analysis based on the spectral equation (3)

and the conductivity (29) has been performed in Ref. [8].
Their Eq. (56), derived by neglecting the logarithmic
term, is identical to our Eq. (30) and can be improved
as discussed above.
What cannot be improved within the approach of Ref.

[8] is the lack of the dispersion jump at Tc. This jump
only emerges when the ω ≪ ∆ asymptotics (29) is super-
seded by the full analytic continuation of the conductivity
to the region − Imω ≫ ∆, a key advancement described
in Sec. III C 1.

3. Carlson-Goldman mode near Tc

For pedagogical purposes, we demonstrate here how
the CG mode can be obtained from the general spectral
equation (15). This charge-neutral mode corresponds
to the limit of an infinitely strong Coulomb interaction,
which causes the first term in Eq. (15) to vanish. There-
fore, the remaining second should be expanded to the
leading and subleading orders:

det′ Π(ω, 0) +
Dq2

2
det′′ Π(ω, 0) = 0. (32)

We now simplify this equation in the usual limit ω ≪ ∆.
The first term in Eq. (32) is given by Eq. (17), with
the conductivity provided by Eq. (29) and f(ω, T ) ≈
π∆/4T . The second term has two contributions, de-
pending on how the derivatives are distributed between
the matrix elements: det′′ Π(ω, q) = D1 + D2. Here
D1 = 2detΠ′(ω, 0), and D2 arises when each matrix el-
ement in detΠ is differentiated twice:

D2

f(ω, T )
=

ω2

4∆2
Π′′

11 +
iω

∆
Π′′

12 +Π′′
22 =

1

2∆2
(33)

that holds for arbitrary ω and T . In the limit considered,
D2 ≈ π/8T∆. D1 is determined by the low-frequency
asymptotic behavior Π′

11(ω, 0) = i/ω+O(ω), Π′
12(ω, 0) =

O(ω), Π′
22(ω, 0) = −π/8T + o(ω lnω). Therefore, D1 =

−iπ/4Tω. Substituting det′′ Π(ω, q) ≈ D1 into Eq. (32)
and omitting the small logarithmic term in Eq. (29), we
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FIG. 5. Real (positive, solid) and imaginary (negative,
dashed) parts of the plasmon dispersion ω(q) as a function
of γn(q)/∆(0), for temperatures T/Tc = 0.95, 0.98, 0.995,
and 1 (just below the transition). With increasing T , both
Reω(q) and Imω(q) exhibit a downward shift.

arrive at the spectral equation for the CG mode:

ω2 +
iπ∆2

2T
ω − 2D∆q2 = 0. (34)

The spectral equation (34) for the CG mode has been
derived in Refs. [6, 8]. Its dispersion relation has the form

ωCG(q) =

√
2∆Dq2 −

(
π∆2

4T

)2

− i
π∆2

4T
. (35)

In this approximation, the CG mode is overdamped at
q < q0, where Dq20 = π2∆3/32T 2. At large wave vec-
tors, q ≫ q0, its dispersion becomes sound-like with the
velocity v =

√
2∆D and small attenuation.

The above derivation of the CG mode’s dispersion ne-
glected the first, Coulomb term in Eq. (15). This is well
justified for all practical purposes because the plasmon
and CG modes are well separated in wave vector [a conse-
quence of γn(q) ≫ Dq2] and the CG mode is a low-energy
excitation.

D. Arbitrary temperatures

At arbitrary temperatures, the plasmon dispersion
ω(q) should be obtained numerically by solving Eq. (3),
where σ(ω) at Imω < 0 must be calculated along a de-
formed contour to respect the analytical structure of the
integrands in Eqs. (19), as explained in Sec. II C.

The complex plasmon dispersion, ω(q), simulated in
this way is presented in Fig. 1 for temperatures T/Tc = 0,
0.7, 0.85, 0.95, and 1− 0 (just below the transition). Its
attenuation vanishes at absolute zero and increases to-
wards Tc. Nevertheless, even at T/Tc = 0.95, the plas-
mon is still weakly damped for all wave vectors.

A key feature of plasmon propagation in supercon-
ductors is the spectral termination at a critical wave

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

2.5

γn(q)/∆0

Q
(q

) T/Tc = 0.95

0.98

0.995

1

FIG. 6. Plasmon quality factor, Q(q) = Reω(q)/2|Imω(q)|,
as a function of γn(q)/Tc, derived from the data in Fig. 5.

vector qc(T ), marked in Fig. 1. For a given tem-
perature, the plasmon dispersion is strictly limited to
q ≤ qc(T ). Plasmons in the vicinity of the termina-
tion point are weakly damped, with their attenuation
vanishing at qc(T ). The oscillation frequency at the
spectral termination, ωc(T ) = ω[qc(T )] is shown in Fig.
2. It decreases monotonically from ωc(0) = 2∆(0) to
ωc(Tc − 0) = 1.382∆(0), see Eq. (26b). The termination
momentum qc(T ) grows with increasing T and diverges
at the transition, see inset to Fig. 2.

In the vicinity of Tc, the plasmon dispersion is illus-
trated in Fig. 5, which shows ω(q) for several temper-
atures above 0.95Tc. The corresponding quality factor,
Q = Reω(q)/2|Imω(q)|, is plotted in Fig. 6. The region
near the transition provides an opportunity to bench-
mark our findings against earlier results [6, 8]. At lowest
q, the plasmon is a well-defined excitation with the pre-
dicted scaling ω(q) ∝

√
γn(q). According to Refs. [6, 8],

it is expected to be damped when ω reaches ∆2(T )/Tc.
Indeed, in Fig. 6 we see a strong reduction of the quality
factor with increasing q. However, the reduction at low
q turns to an increase at larger q, producing a minimum
in the momentum dependence of Q. This Qmin is larger
that 1 if T < 0.96Tc.

Consequently, a plasmon may become overdamped
only within a very narrow temperature range, approx-
imately 4% of Tc. But even in this regime, increasing
q will transform a decaying plasmon into a propagating
one. The observed revival of a plasmon at large q is a
consequence of the discontinuity at Tc, which leads to
the growth of Reω(q) and suppression of |Im γ(q)| with
increasing q.

The discontinuity at the transition is better visualized
when the plasmon dispersion is plotted as a function of
temperature at a given q, see Fig. 7. A larger q results in
a higher starting value of Reω(q) and a lower attenuation
on the superconducting side of the transition.
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FIG. 7. Temperature dependence of the real (positive) and
imaginary (negative) parts of the plasmon dispersion ω(q) cal-
culated for three wave vectors corresponding to γn(q)/∆(0) =
0.1, 0.5 and 1.3. When the temperature drops below Tc,
the normal-state overdamped dynamics ω(q) = −iγn(q) is
abruptly modified, with an immediate appearance of a finite
Reω(q) and a jump in Imω(q).

IV. DISCUSSION AND CONCLUSION

Collective excitations in a superconductor are governed
by the quasiparticle response to time-dependent bosonic
fields: the electric potential and the order parameter’s
phase and amplitude. This response is encoded in a 3×3
polarization operator, which incorporates the indepen-
dent dynamics of the amplitude (SH) mode and a sep-
arate block describing coupled charge-phase oscillations.
By neglecting the SH component, we derive an expression
for the 2 × 2 matrix Π(ω, q) in a dirty superconductor,
responsible for plasmons excitations and the CG mode.

Despite the generic complexity of the quasiparticle re-
sponse, the optical conductivity σ(ω, T ) is its only char-
acteristic relevant for low-momentum plasmons. While
the spectral equation (3) appears deceptively simple,
solving it demands that σ(ω, T ) be analytically contin-
ued to Imω < 0, which is a challenging task. We achieve
that by a proper deformation of the contour in the inte-
gral representation for the Mattis-Bardeen conductivity.

The peculiar structure of interpenetrating branch cuts
of the retarded and advanced Green functions (Fig. 3)
has a number of important consequences:

• The jump of the plasmon dispersion at Tc. While
strong impurity scattering totally damps normal
plasmons, a finite propagation frequency Reω(q)
immediately appears just below the superconduct-
ing transition.

• Existence of the spectral termination point, qc(T ),
where a plasmon, which is generically damped, be-
comes undamped.

• Revival of propagating plasmons at large wave vec-
tors near Tc.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-1.0

-0.5

0.0

0.5

1.0

(ωpτ)
−1

Im
ω
/
ω
p

R
e
ω
/
ω
p

clean limit dirty limit

FIG. 8. Normal-metal plasmon dispersion ω(q) in the cross-
over between the clean and dirty limits controlled by the ratio
of the momentum relaxation rate τ−1 and the clean plasmon
frequency ωp(q), according to Eq. (36).

It is instructive to compare our results with the plas-
mon behavior in a normal metal film in the presence
of momentum relaxation. The spectral equation follows
from the vanishing of the dielectric function, which yields
V0(q)P (ω, q)+1 = 0, where P (ω, q) is the polarization op-
erator (density-density correlation function). Modelling
impurity scattering by a Gaussian random potential with
the correlator ⟨U(r)U(r′)⟩ = δ(r− r′)/(2πντ) and calcu-
lating the impurity ladder [34], we obtain P (ω, q)/2ν =
1− iωτ [1− 1/B(ω, q)]−1. Given that plasmon wave vec-
tors are typically very small, we evaluate the ladder block
in the limit ql ≪ 1, while treating ωτ as an arbitrary pa-
rameter: 1/B(ω, q) = 1−iωτ−Dq2/(1−iωτ). The spec-
tral equation then takes the form iω(1− iωτ) = ω2

p(q)τ ,
where ωp(q) is the plasmon dispersion in the clean case:
ω2
p(q) = 2νDV0(q)/τ = γn(q)/τ . We thus arrive at the

plasmon dispersion relation [mathematically equivalent
to Eqs. (30) and (35)]

ω(q) =
√
ω2
p(q)− 1/4τ2 − i/2τ. (36)

For a given q, the evolution of ω(q) with the momentum
relaxation rate τ−1 is presented in Fig. 8. By increas-
ing the effective disorder strength, the system exhibits
a crossover from the narrow plasmon resonance regime
at τ−1 ≪ 1/ωp(q) to the purely overdamped regime at
τ−1 > 2/ωp(q). In the latter case, cooperative plas-
mon oscillations cannot be established due to dissipative
losses, and their dispersion becomes purely relaxational
[Eq. (1)], with the attenuation approaching γn(q) given
by Eq. (2).
Comparing Figs. 7 and 8, one can qualitatively say that

the transition to the superconducting state in a dirty
metal effectively increases the apparent sample purity,
restoring collective oscillations at low temperatures. The
damping decreases with decreasing temperature, effec-
tively mimicking the trend from the dirty to the clean
case in Fig. 8. Of course, the clean plasma frequency,
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ωp(q), is not recovered in the superconducting state. The
reappearance of plasmon modes is caused not by the sup-
pression of scattering, but rather by the emergence of a
coherent, dissipationless motion in the superconducting
condensate.

In dirty superconducting films, the plasmon wave-
length is large. To estimate it, consider the T = 0 spec-
tral termination point determined by γn[qc(0)] = 2∆(0).
With V0(q) = 2πe2/ϵq, one obtains for the typical wave
vector: qc(0) = R□∆(0)ϵ/π, where R□ is the sheet resis-
tance and ϵ is the effective dielectric constant. Assuming
the BCS relation, ∆(0) = 1.76Tc, we obtain for the as-
sociate wave length

λc(0) =
2π

qc(0)
=

0.8mm

R□[kΩ]Tc[K] ϵ
. (37)

For a typical NbN film with Tc ∼ 10K, R□ ∼ 2 kΩ and
ϵ ∼ 5, we have λc ∼ 10µm. This implies that the smallest
structures capable of sustaining plasmonic resonance in
dirty NbN films at T ≪ Tc must be on the scale of tens
to hundreds of microns.

However, the rapid growth of the termination wave
vector qc(T ) near Tc (see inset to Fig. 2) shifts the ex-
perimental detection threshold for plasmon resonance to
wavelengths smaller than those predicted by Eq. (37).
The experimental observation of weakly damped plas-
mons near Tc is challenging, and would thereby offer cru-
cial support for our theory.
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Appendix A: Keldysh sigma model

1. Superconducting saddle point

Nonequilibrium phenomena in dirty superconductors
are most effectively described by the sigma model in the
Keldysh formalism [28]. It is a field theory for the quasi-
particle field Q(r) subject to the constraint Q2 = 11, the
order parameter field ∆(r), and the electric potential
field Φ(r), specified by the action

S =
iπν

4
Tr
[
D(∇Q)2 + 4i(iτ3∂t + Φ̌ + i∆̌)Q

]
+Tr

[
ΦT (2ν + V −1

0 )σ1Φ− (2ν/λ)∆+σ1∆
]
. (A1)

The matrix Q bearing two continuous energy/time in-
dices acts in the direct product of the Gorkov-Nambu
space (N, Pauli matrices τi) and the Keldysh space (K,
Pauli matrices σi). Depending on a single time/frequency

argument, bosonic fields Φ = (ϕ, ϕq)
T and ∆ = (∆,∆q)

T

are two-component vectors in the Keldysh space, con-
taining the classical and quantum components. They are
organized in the 4× 4 matrices

Φ̌ = τ0(ϕσ0 + ϕqσ1), (A2a)

∆̌ =

(
0 ∆
∆∗ 0

)
N

σ0 +

(
0 ∆q

∆∗
q 0

)
N

σ1. (A2b)

The stationary superconducting saddle point is char-
acterized by the order parameter ∆ (chosen to be real)
and the energy-diagonal matrix Q given by

Q(ε) =

(
QR(ε) Fε[Q

R(ε)−QA(ε)]
0 QA(ε)

)
K

, (A3)

with the retarded (α = R) and advanced (α = A) blocks

Qα(ε) =

(
gαε fα

ε

fα
ε −gαε

)
N

(A4)

composed of the Green functions introduced in Eq. (9).
At thermal equilibrium, Fε = tanh(ε/2T ). The value of
the order parameter should be obtained from the self-
consistency equation (11) [derivative of the action (A1)
with respect to ∆∗

q ].

2. Diffusive modes

Deviations from the superconducting saddle point (A3)
are parametrized by the matrix W as [28, 32]

Q = U−1
F U−1σ3τ3(1 +W +W 2/2 + ...)UUF . (A5)

The form of Eq. (A5) at W = 0 is required to match Eq.
(A3), which is enforced by the choice

UF =

(
1 Fε

0 1

)
K

, U =

(
eiτ2θ

R
ε /2 0

0 eiτ2θ
A
ε /2

)
K

, (A6)

where the spectral angles θR,A
ε parametrize the Green

functions as gR,A
ε = ± cos θR,A

ε and fR,A
ε = ± sin θR,A

ε .
The matrix W , which anticommutes with σ3τ3, has the
form

W =

(
cR1 iτ2 + cR2 iτ1 d1τ0 + d2τ3
−d1τ0 − d2τ3 cA1 iτ2 + cA2 iτ1

)
K

. (A7)

At the Gaussian level, the correlation functions of these
diffusive modes are given by

⟨di;ε1,ε2(q)diε3,ε4(−q)⟩ = 1

πν
Dε1,ε2δε1,ε4δε2,ε3 , (A8)

⟨cR,A
i;ε1,ε2

(q)cR,A
i;ε3,ε4

(−q)⟩ = 1

πν
CR,A

ε1,ε2δε1,ε4δε2,ε3 , (A9)

where δε,ε′ = 2πδ(ε − ε′) and the bare diffuson and
cooperon propagators are defined in Eqs. (10).
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3. Effective action for bosonic fields

Deviations of the bosonic fields from their equilib-
rium values are parametrized by δΦ = (ϕ, ϕq)

T and
δ∆ = (δ∆,∆q)

T . Integrating out diffusive modes, one
arrives at the effective action for the classical and quan-
tum components of the fields δΦ and δ∆. In the prob-
lem of plasmon waves propagation, the electric potential
is coupled only to the phase of the order parameter (in
the linear order, φ = Im δ∆/∆), while the amplitude
Schmid-Higgs mode is not excited. (The latter will be
admixed in the presence of a finite supercurrent [7, 16].)
The resulting action takes the form

S
(2)
eff =

∫
(dq)(dω) ηT−ω,−qV−1

ω,q ηω,q, (A10)

where we arrange the fields in a 4-component vector η =
(ϕ, Im δ∆, ϕq, Im∆q)

T .

The inverse bosonic propagator V has the standard
structure in the Keldysh space [28, 35]:

V−1
ω,q =

(
0

(
V A
)−1

ω,q(
V R
)−1

ω,q

(
V K
)−1

ω,q

)
. (A11)

Equations of motion for the classical components ϕ and
Im∆ are obtained by taking the derivatives with respect
to their quantum counterparts. This procedure cuts the
block (V R)−1

ω,q from the matrix (A11). Calculating it in
the RPA approximation, we arrive at Eqs. (5)–(8).
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