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Thermal phase slips in superconducting films
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A dissipationless supercurrent state in superconductors can be destroyed by thermal fluctuations.
Thermally activated phase slips provide a finite resistance of the sample and are responsible for
dark counts in superconducting single photon detectors. The activation barrier for a phase slip is
determined by a space-dependent saddle-point (instanton) configuration of the order parameter. In
the one-dimensional wire geometry, such a saddle point has been analytically obtained by Langer and
Ambegaokar in the vicinity of the critical temperature, Tc, and for arbitrary bias currents below the
critical current Ic. In the two-dimensional geometry of a superconducting strip, which is relevant for
photon detection, the situation is much more complicated. Depending on the ratio I/Ic, several types
of saddle-point configurations have been proposed, with their energies being obtained numerically.
We demonstrate that the saddle-point configuration for an infinite superconducting film at I → Ic is
described by the exactly integrable Boussinesq equation solved by Hirota’s method. The instanton
size is Lx ∼ ξ(1−I/Ic)

−1/4 along the current and Ly ∼ ξ(1−I/Ic)
−1/2 perpendicular to the current,

where ξ is the Ginzburg-Landau coherence length. The activation energy for thermal phase slips
scales as ∆F 2D ∝ (1 − I/Ic)

3/4. For sufficiently wide strips of width w ≫ Ly, a half-instanton is
formed near the boundary, with the activation energy being 1/2 of ∆F 2D.

Superconductivity is the ability to conduct electric cur-
rent without dissipation due to the coherent flow of the
Cooper pairs condensate. However such an idealized pic-
ture is undermined by vortex motion and spontaneous
phase slips, either thermal [1, 2] or quantum [3, 4]. Phase
slips drive a superconductor out of its dissipationless su-
percurrent state, causing finite voltage and therefore dis-
sipation. When quantum phase slips are coherent, they
destroy phase integrity of Cooper pairs and mediate the
superconductor-to-insulator transition [5–8].

The most convenient platform for studying individ-
ual thermal phase slips is provided by superconduct-
ing nanowire single-photon detectors (SNSPDs) [9–11].
These devices are engineered to rapidly restore a dis-
rupted supercurrent state, preventing the formation of
the resistive state when phase-slip proliferation creates a
complex dynamic with intermittent regions of supercon-
ducting and normal phases [12]. In SNSPDs, phase slips
trigger dark counts, when a voltage pulse arises in the
absence of an incoming photon [13, 14]. While detrimen-
tal to photon-counting fidelity, these events enable direct
measurement of the phase slip rate [15, 16].

The rate of thermal phase slips is determined by
the height ∆F of the potential barrier protecting the
metastable supercurrent state and corresponding to a
saddle point of the free energy. Once the latter is reached,
superconductivity is (locally) destroyed, producing a fi-
nite voltage. Thus the problem of thermal activation
reduces to finding a proper saddle-point. A current-
biased Josephson junction controlled by the phase dif-
ference φ provides the simplest example with the barrier
∆F 0D = U(φmax) − U(φmin), where φmin and φmax is
a minimum and a neighboring maximum of the tilted
washboard potential U(φ) = −EJ cosφ− (ℏ/2e)Iφ, and
EJ is the Josephson energy.

The theory of thermal phase slips in thin supercon-

ducting wires in the vicinity of the critical temperature,
Tc, has been developed by Langer and Ambegaokar (LA)
long time ago [1, 2]. They have analytically identified
the localized saddle-point (instanton) solution for the
Ginzburg-Landau (GL) equations, with the suppression
of the modulus of the order parameter |∆| at the center
of the instanton being accompanied by the increase of the
phase gradient. The instanton size Lx ∼ ξ(1− I/Ic)

−1/4

diverges when the current I approaches the critical cur-
rent Ic [ξ(T ) is the GL coherence length], resulting in the
power-law scaling of the barrier:

∆F 1D ≈ c1εcondAξ(1− I/Ic)
5/4, (1)

where εcond(T ) is the condensation energy density, A is
the wire cross-section, and c1 = 225/43−5/45−1 = 3.86.
Yet the one-dimensional (1D) theory of LA fails to

describe dark counts in SNSPDs with a superconduct-
ing strip of the width w ≫ ξ inside, and generaliza-
tion of the theory to the two-dimensional (2D) case is
required. This appears to be a nontrivial task due to
(i) (co)existence of different types of saddles: both topo-
logically trivial (LA-like, when the order parameter is
suppressed in the center of the nucleus but remains fi-
nite) and topologically nontrivial (single vortex, vortex-
antivortex pair), (ii) inhomogeneous current distribution,
and (iii) restricted geometry. As a result, previous studies
were limited to providing approximate or numerical esti-
mates of the instanton configuration and the associated
energy barrier. Inspired by hot-spot physics of nonequi-
librium photon detection [9], a popular scenario was to
interpret equilibrium dark counts as thermal unbinding
of vortex-antivortex pairs (topologically nontrivial saddle
point) [13, 14, 17]. The most comprehensive numerical
search for the saddle-point solutions in the SNSPD con-
text has been carried out by Vodolazov [18], who con-
sidered nanowires of different widths w (varied from 4.5ξ
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FIG. 1. Saddle-point configuration of the current j(x, y) re-
sponsible for the thermal phase slip at I/Ic = 0.98. The
supercurrent follows the solid lines, and its magnitude (nor-
malized by the current density j0 at infinity) is shown by the
color scale. Contours of constant phase appear dashed. In the
regions encircled by thick solid lines, j exceeds the nominal
critical current density jc for a uniform flow.

up to 30ξ) in the vicinity of Tc. He has shown that the
topology of the saddle point with the lowest energy is
controlled by the current: it is vortex-like at low I and
topologically trivial near Ic.

In this Letter we report on the first analytical deter-
mination of the phase slip rate in superconducting films.
Motivated by recent experiments with micron-wide-strip
SNSPDs [19, 20], which is nearly 1000 times larger than
the coherence length, we consider an infinite 2D geom-
etry without edges. Working in the GL region close to
Tc, we obtain the following expression for the activation
barrier valid near the critical current:

∆F 2D ≈ c2εconddξ
2(1− I/Ic)

3/4, (2)

where d is the film thickness, and c2 = 227/43−9/4π =
28.55. The current density at the saddle-point solution
normalized by its value at infinity is given by anisotropic
Lorentz-like functions

jx
j0

= 1− 18ε2ξ2(2εx2 − 3ε2y2 + 3ξ2)

(2εx2 + 3ε2y2 + 3ξ2)2
, (3a)

jy
j0

= − 72ε3ξ2xy

(2εx2 + 3ε2y2 + 3ξ2)2
, (3b)

where ε ≈
√

(8/3)(1− I/Ic) ≪ 1 is the small parameter
of the theory. The size of the optimal fluctuation along
the applied current (j = j0ex) coincides with the size of
the 1D LA instanton: Lx ∼ ξ/

√
ε ∼ ξ(1 − I/Ic)

−1/4,
whereas the transverse dimension of the instanton is
parametrically larger: Ly ∼ ξ/ε ∼ ξ(1− I/Ic)

−1/2 ≫ Lx

(a similar strong anisotropy at I → Ic has recently been

reported in Ref. [21]). This explains the scaling (2) of
the 2D barrier: F 2D ∼ (Ly/ξ)F

1D, changing the 1D ex-
ponent of 5/4 to 3/4.
In Fig. 1, we visualize the instanton current pattern

at ε = 0.23 (I/Ic = 0.98). The supercurrent flows along
black solid lines, and its magnitude |j(r)| is shown by the
color scale. The current density has a dip, with a mini-
mum at the center of the instanton. The obtained solu-
tion conserves the net current, and j(r) is redistributed to
compensate the suppression near the origin by an excess
current (|j| > j0) in the regions y2 > ξ2/ε2+2x2/3ε. Re-
markably, the supercurrent exceeds the nominal critical
current density jc in two regions along the y axis encircled
by the thick line. Such an “overheated” configuration—
forbidden in the uniform case—is stabilized by a finite
|∆| gradient.
Now we briefly describe the approach for analytical

determination of the 2D instanton (3). The starting point
is GL free energy written in the dimensionless form:

F = C

∫
dx dy

(
|∇∆|2 − |∆|2 + |∆|4/2

)
, (4)

where coordinates are measured in units of ξ, the order
parameter field ∆(r) = |∆(r)|eiφ(r) is normalized by its
equilibrium value without current, and C = 2εconddξ

2.
The current density is j = |∆|2∇φ, and we consider
configurations approaching a given j0ex at infinity. The
standard uniform-current state, providing a free-energy
minimum, is characterized by a linear phase growth
φ0 = Ax, suppressed order parameter |∆0|2 = 1 − A2,
and j0 = (1 − A2)A. The critical current jc = 2/33/2 is

achieved at Ac = 1/
√
3 [22].

The instanton configuration corresponds to a spatially
inhomogeneous saddle point of the functional (4). To
find it, one has to solve a set of coupled, nonlinear 2D
partial differential GL equations governing the order pa-
rameter’s modulus and phase. The main difficulty is that
neither |∆(r)| nor φ(r) can be excluded to formulate a
theory in terms of a single real function. To construct
such a representation, we suggest to write the supercur-
rent density j(r), which obeys the current conservation
law div j = 0, in terms of a scalar stream function ψ(r):

j = (ψy,−ψx). (5)

Such a representation is a standard trick in the hydro-
dynamics of 2D incompressible fluids [23–25], reducing
the number of unknown real functions from two to one.
A uniform supercurrent flow corresponds to the stream
function ψ0 = j0y, which plays the role of the boundary
condition for the instanton solution at infinity: ψ → j0y.
In order to be able to formulate the theory in terms

of the stream function, one has to answer the principal
question: Can the complex order parameter field ∆(r)
be unequivocally reconstructed for a given ψ(r)?
First we note that, by definition,

∇ψ∇φ = 0, (6)
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indicating that ψ and φ is a pair of orthogonal curvilinear
coordinates on the plane. In order to find φ(r) at a given
ψ(r), one has to solve Eq. (6). It is a linear first-order
partial differential equation that can be solved by the
method of characteristics with the boundary condition
φ → Ax at infinity. A global solution for φ(r) exists
provided ∇ψ ̸= 0 everywhere on the 2D plane. In this
case, the characteristics of Eq. (6) (dashed lines in Fig. 1),
which go vertically at y = ±∞, bend near the instanton
center without intersecting, thereby uniquely defining the
phase everywhere. Put differently, if the superflow at the
instanton solution is laminar and vortex-free (j ̸= 0), it
can be completely described by the stream function.

The applicability of the stream-function approach to
the phase slip determination at I → Ic is related to
fragility of the uniform superconducting state [1], when
even a tiny perturbation can switch the system to the
normal state. This excludes vortex-like configurations
due to a finite energy of the core [18]. In the absence of
vortices, the phase is uniquely determined by ψ(r). Once
φ(r) is known, |∆(r)| is immediately obtained from the
local expression for the current. In this way, we arrive at
a theory formulated in terms of the stream function only,
but the price is that the free energy ∆F [ψ] is nonlocal
(and can be obtained only numerically) and nonlinear.

The program outlined above can be successfully imple-
mented at I → Ic using perturbation theory. To this end,
we write the stream function as ψ = j0(y + fy), where
f(x, y) is an unknown function vanishing at I = Ic. Mod-
ification of the phase will be described by the function
g(x, y): φ = A(x + g). Substituting these expressions
into Eq. (6), we get an equation for g:

fxy(1 + gx) + (1 + fyy)gy = 0, (7)

which should be solved for a given f . Near the critical
current, when f is small, the solution can be expanded
as g = g(1) + g(2) + . . . , where g(n) ∝ fn. In the first
order, we get a local relation g(1) = −fx, whereas higher
order corrections are nonlocal and should be obtained by

solving differential equations g
(2)
y = (fxx+fyy)fxy, g

(3)
y =

−(fxx + fyy)fxyfyy − g
(2)
x fxy, etc. The order parameter

modulus is given by |∆|2 = ∆2
0[1+(1+fyy)/(1+gx)]. Sub-

stituting these expressions into Eq. (4), we obtain the free
energy as a nonlocal functional of the field f(x, y). Its se-
ries expansion starts with the quadratic term, which is lo-
cal and can be brought to the form including the squares
of the second (f2xx, f

2
xy, f

2
yy) and third (f2xxx, f

2
xxy, f

2
xyy,

f2yyy) derivatives. The coefficients in front of these terms

depend on A and remain finite at A→ Ac, except for f
2
xx,

which is proportional to ε = 1−3A2 ≈
√
(8/3)(1− I/Ic),

vanishing at criticality. This is the reason one has to keep
the next-order term f2xxx. Balancing εf

2
xx and f2xxx gives

the power-law scaling of the instanton size along the cur-
rent, Lx ∼ ξ/

√
ε, coinciding with that of the 1D LA in-

stanton. The instanton size perpendicular to the current
can be estimated by comparing εf2xx and f2xy that yields
Ly ∼ ξ/ε. Thus, approaching Ic, the 2D instanton be-

comes strongly elongated in the direction perpendicular
to the current [21]. As a consequence of the above scal-
ing, only the terms εf2xx, f

2
xy and f2xxx should be retained

among all quadratic terms near the criticality.
The form of the cubic contribution to the free energy

(f3) is more complicated, containing a larger number of
terms, some being nonlocal. However in the limit I → Ic,
the anisotropy of the instanton (Ly ≫ Lx) suggests that
the leading term should have the minimal number of x
derivatives and no y derivatives. This requirement selects
the term f3xx, which enters locally. As a result, near the
criticality the free energy takes the form (all coefficients
except for the first one are evaluated at Ic)

F = C

∫
dx dy

(
ε

3
f2xx +

2

9
f2xy +

1

6
f2xxx +

2

9
f3xx

)
. (8)

Rescaling the coordinates and the function according
to x = (2ε)−1/2x̄, y = 3−1/2ε−1ȳ, and f = f̄/2, we arrive
at F = 21/23−3/2ε3/2SC, that already reveals the ε3/2

scaling of the barrier. The coefficient is determined by
the instanton solution for the parameter-free functional

S =

∫
dx̄ dȳ

(
1

2
f̄2x̄x̄ +

1

2
f̄2x̄ȳ +

1

2
f̄2x̄x̄x̄ +

1

3
f̄3x̄x̄

)
. (9)

Its saddle-point equation is conveniently written in terms
of u = f̄x̄x̄:

ux̄x̄ + uȳȳ − ux̄x̄x̄x̄ + (u2)x̄x̄ = 0, (10)

which is the elliptic form of the Boussinesq equation
[26, 27]. In its original (hyperbolic) formulation, with
ȳ = it and t being time, Eq. (10) describes propaga-
tion of shallow water waves in the long-wavelength limit.
The Boussinesq equation belongs to a celebrated class of
nonlinear partial differential equations integrable by the
inverse scattering method [28]. A hallmark of the wave-
form Boussinesq equation’s integrability is the existence
of solitary waves (solitons).
In the elliptic case considered, we are interested in a

nontrivial localized solution to Eq. (10) that vanishes at
infinity (instanton). Such an exact solution can be ob-
tained in the Hirota form [29, 30] and is given by

uB = −6∂2x̄ ln(x̄
2 + ȳ2 + 3). (11)

Hence, f̄B = −6 ln(x̄2 + ȳ2 + 3), the dimensionless in-
stanton action (9) evaluates to S = 8π, and we arrive at
Eq. (2) for the value of the activation barrier.
While Eq. (11) provides an exact instanton solution

for the Boussinesq equation (10), it is instructive to con-
struct a saddle point for the action (9) following a vari-
ational approach. To this end, we restrict ourselves to a
number of probe functions f̄ = az(x̄, ȳ) listed in Table
I. Each ansatz is characterized by an amplitude a and a
two-parametric function z(x̄, ȳ), with c1 and c2 control-
ling its decay at large x̄ and ȳ, respectively. First we
determine the optimal value of the amplitude: aopt =
−⟨z2x̄x̄ + z2x̄x̄x̄ + z2x̄ȳ⟩/⟨z3x̄x̄⟩, where ⟨· · · ⟩ =

∫
dx̄ dȳ (· · · ).
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TABLE I. Exact instanton solution for the Boussinesq equa-
tion (10) and several variational approximations.

Ansatz for f̄(x̄, ȳ) copt1 copt2 Sopt/8π

−6 ln(x̄2 + ȳ2 + 3) 1

a/(1 + c21x̄
2 + c22ȳ

2)1/2 0.4 0.4 1.120

a/(1 + c21x̄
2 + c22ȳ

2) 0.322 0.322 1.286

a/(1 + c21x̄
2)(1 + c22ȳ

2) 0.298 0.422 1.612

a/ cosh(c1x̄) cosh(c2ȳ) 0.459 0.543 1.616

a exp(−c21x̄
2 − c22ȳ

2) 0.365 0.365 3.003

Substituting it back to Eq. (9) and minimizing with re-
spect to c1 and c2, we obtain the following variational
estimate for the instanton action:

Sopt[z] = min
c1,c2

⟨z2x̄x̄ + z2x̄x̄x̄ + z2x̄ȳ⟩3

6⟨z3x̄x̄⟩2
. (12)

The values of Sopt are listed in the last column of Table I.
The lower boundedness of the right-hand side of Eq. (12)
provides an independent evidence for the existence of an
instanton solution for the Boussinesq equation. We also
see that (i) Sopt > 8π for all probe functions, (ii) power-
law functions with a small exponent provide a better
approximation, and (iii) the best candidates depend on
x̄2 + ȳ2. Collectively, these results confirm Eq. (11) as
the saddle-point solution with the minimal energy.

The current density, jB, for the Boussinesq instanton
with fB(x, y) = −3 ln(1 + 2εx2/3 + ε2y2) is given by Eq.
(3). It reaches its minimum value at the center, where
jB(0)/j0 = 1 − 6ε2. The order parameter ∆B(r) corre-
sponding to fB also has a minimum at r = 0 shown by
the dashed line in Fig. 2(b). Both jB(0) and ∆B(0) turn

to zero at ε = 1/
√
6 that corresponds to I/Ic = 0.926,

which is numerically close to the critical current. Since
the theory assumes that the saddle point is a small mod-
ification of the uniform solution, one expects it remains
valid in a narrow 5-percent window below Ic.
In order to get insight on the behavior of the instanton

at larger deviations of I from Ic, when the perturbation
of j(r) is not small but is still vortex-free, we have per-
formed a numerical variational search of the saddle point.
Assuming a Boussinesq-like ansatz for the stream func-
tion, f(x, y) = −a ln(1 + c21x

2 + c22y
2), specified by the

parameters a, c1 and c2 [in the limit I → Ic, given by
fB(x, y)], we reconstruct the phase by numerically solv-
ing Eq. (7) for g(x, y). The free energy is then numer-
ically maximized with respect to a and minimized with
respect to c1,2. The barrier obtained in this way is shown
in Fig. 2(a), with the dashed line illustrating the asymp-
totic expression (2). The order parameter at the instan-
ton center is presented in Fig. 2(b). Suppression of ∆(0)
nearly follows ∆B(0) (dashed line) up to 0.95 Ic, becom-
ing weaker for smaller currents. The last obtained point
with ∆(0) ≈ 0.1∆0 is calculated at I1 ≈ 0.915 Ic, and our
numerical scheme cannot identify a saddle-point solution
below I1.
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FIG. 2. Numerical results for the variational Boussinesq-like
ansatz: (a) energy barrier (dots) and its asymptotic behavior
(2) (dashed line); (b) order parameter at the center of the
instanton (dots) and ∆B(0) (dashed line) normalized by its
value at infinity.

Given that the order parameter at the center has al-
ready lost 90% of ∆0 at the last computed point, one
can expect that ∆(0) for the true—not variational—
instanton will touch zero at some current I∗ ≈ 0.9 Ic.
One can further argue that this I∗ marks the point of the
second-order transition between topologically nontrivial
(vortex-like) and topologically trivial instantons. In such
a scenario, the Boussinesq instanton at I → Ic continu-
ously transforms into a vortex-antivortex pair, with van-
ishing j(0) and ∆(0) at Itop and further splitting of the
emerging zero in ∆(r) into a pair of zeros of positive and
negative windings at I < Itop (similar to the mechanism
of topological transition in stretched graphene [31, 32]).
The fact that our probe numerical solution can be ex-
tended to ∆(0) ≈ 0.1∆0 presumably excludes an al-
ternative first-order scenario, when the vortex-antivortex
and Boussinesq-like solutions coexist in some region, with
their barriers being equal at Itop.
Our results derived for an infinite plane determine the

dark-count rate in SNSPD detectors with wide supercon-
ducting strips [19, 20]. If the strip’s width w ≫ Ly, the
instanton is formed right at its edge and has the acti-
vation energy ∆F 2D/2. In the opposite limit of narrow
strips (w ≪ Ly), the problem becomes 1D, with the bar-
rier height given by the LA expression (1).

To conclude, we provide the first analytical calculation
of the activation barrier for thermal phase slips in infinite
current-carrying superconducting films at I → Ic. In this
limit, the saddle-point configuration is governed by the
exactly integrable Boussinesq equation. The instanton
is strongly anisotropic with Ly ≫ Lx ≫ ξ, leading to

the (1− I/Ic)
3/4 scaling of the activation barrier. Based

on numerical simulations, we conjecture a second-order
topological transition between a vortex-free and a vortex-
antivortex saddle-point configurations at Itop ≈ 0.9 Ic.

We are grateful to I. V. Kolokolov and A. V. Semenov
for stimulating discussions. This research was supported
by the Russian Science Foundation under Grant No. 23-
12-00297 and by the Foundation for the Advancement of
Theoretical Physics and Mathematics “BASIS”.
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