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We study how the supercurrent flow pattern is altered by inhomogeneities in superconducting
films. Working in the vicinity of the critical temperature and assuming a model of short-range
disorder in the quadratic term of the Ginzburg-Landau functional, we develop a perturbation theory
in the inhomogeneity strength. Absorbing the ultraviolet divergences into the renormalization of
the critical temperature, we arrive at a well-defined theory governed by large-scale physics. In
the presence of inhomogeneities, the correlation functions of the order parameter and supercurrent
exhibit a long-range power-law behavior, which can be attributed to the mixing of the amplitude
and phase modes. The fluctuation magnitude grows with increasing the average current, and the
system becomes strongly inhomogeneous near the critical current.

I. INTRODUCTION

The impact of disorder on superconductivity has been
the subject of theoretical and experimental research for
decades. According to Anderson’s seminal result [1], the
thermodynamic properties of a superconductor in the
presence of potential impurity scattering do not depend
on the ratio l/ξ0, where l is the mean free path and ξ0
is the clean coherence length. In particular, the criti-
cal temperature, Tc, remains the same both in the clean
(l ≫ ξ0) and dirty (l ≪ ξ0) limits, while the coherence
length ξ and response functions (superfluid stiffness, op-
tical conductivity [2, 3], etc.) explicitly depend on the de-
gree of disorder. The insensitivity of Tc to disorder, usu-
ally referred to as Anderson’s theorem, is valid for good
metals with kFl ≫ 1, where kF is the Fermi momentum.
The interplay of disorder and Coulomb interaction weak-
ens the effective attraction in the Cooper channel that
results in a suppression of Tc already in the first order in
1/kFl [4–7]. This is the so-called fermionic mechanism of
superconductivity suppression [8], when the system re-
mains nominally uniform.

Conventional theoretical approaches for describing dis-
ordered superconductors, such as the Ginzburg-Landau
(GL) expansion [9], Eilenberger [10] and Usadel [11]
equations, are based (often implicitly) on the conjecture
of self-averaging. The key assumption behind this ap-
proximation is that in the presence of homogeneous dis-
order the superconducting order parameter ∆(r) can be
replaced by its spatial average. Neglecting the emerg-
ing inhomogeneity of the order parameter, which is un-
avoidably introduced by impurities, can be justified for
moderately disordered superconductors with kFl ≫ 1
[12, 13]. The effect of inhomogeneity becomes dominant
for strongly disordered superconductors with kFl ∼ 1, in
the vicinity of the superconductor–insulator transition
(SIT) [14, 15]. Emerging inhomogeneity of the supercon-
ducting state with increasing disorder was demonstrated
numerically [16]. Starting with a pioneering experiment
[17], spontaneous inhomogeneity visualized by the scan-

ning tunneling microscopy/spectroscopy technique has
been revealed in a number of disordered superconduct-
ing films (TiN, NbN, InOx) [18–22], both on the metallic
(kFl ≳ 1) and insulating (kFl ≲ 1) sides of the SIT.
Remarkably, it is this type of disordered films that is

now routinely used as the core element of superconduct-
ing nanowire single-photon detectors (SNSPD) [23, 24],
as well as in quantum phase-slip devices [25, 26]. To make
a photon detector out of a superconducting nanowire, it
is biased by a finite supercurrent close to the critical cur-
rent. Upon an arrival of a photon, its energy is released
into the electronic system causing local destruction of the
supercurrent state followed by a voltage pulse. Due to an
intrinsic inhomogeneity of the superconducting nanowire
made of a highly resistive material, the barrier protecting
the supercurrent state should exhibit spatial fluctuations.
Therefore a photon with a given energy may either trig-
ger a count or not depending on the value of the barrier at
the absorption point. This will lead to an effective smear-
ing of the threshold energy of the detector, deteriorating
the device performance. Other mechanisms of broad-
ening the sharp spectral cutoff in SNSPDs discussed in
literature involve Fano fluctuations (the fraction of en-
ergy remaining in the electronic subsystem after the first
stage of photon absorption [27]) [28], local temperature
fluctuations [29], dependence on the position of the pho-
ton absorption point across the strip [30]. To the best of
our knowledge, the only attempt to describe the effect of
spatial inhomogeneity on the operation of SNSPDs was
made in Ref. [31], where a simple and rather artificial
model of inhomogeneity was used.
The response of a superconductor to an infinitesimally

small current is characterized by the superfluid stiffness.
Its behavior in superconductors with emerging inhomo-
geneity was studied numerically in Ref. [32]. Recently,
an anomalous power-law temperature dependence of the
superfluid stiffness was reported for a strongly disordered
amorphous InOx with localized Cooper pairs (kFl ≲ 1),
which was qualitatively explained by mapping onto a
pseudo-spin model on a graph [33]. Despite those at-
tempts, an analytical description of the superfluid stiff-
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(a) (b)

FIG. 1. Numerical simulation of the order parameter |∆(r)| (color map; normalized by its value in the homogeneous case)
and supercurrent flow j(r) (current flow lines) for an inhomogeneous superconducting film at (a) an infinitesimal current and
(b) close to the critical current, v/vc = 0.85. Both panels are obtained for the same short-range disorder with the correlation
length rc = ξ/10 in the square domain 12.8 ξ × 12.8 ξ with periodic boundary conditions. One can clearly see that with
increasing the current, the amplitude of |∆(r)| fluctuations grows and their correlation length becomes larger. At the same
time, the supercurrent pattern j(r) becomes more inhomogeneous.

ness for moderately disordered superconductors on the
metallic side of the SIT (kFl ≳ 1) is still missing.

In the current publication, we aim at developing a the-
oretical approach to characterizing the supercurrent state
in the presence of inhomogeneity. To simplify the analy-
sis, we restrict ourselves to the vicinity of Tc, where the
GL expansion in terms of the order parameter field ∆(r)
can be employed. Since the microscopic origin of inho-
mogeneity in disordered samples is typically unknown, we
will use a phenomenological random-temperature model,
when the coefficient τ(r) in front of |∆(r)|2 term in
the GL functional exhibits short-range spatial fluctua-
tions [34]. This model is believed to be a universal de-
scription near Tc. It can be derived starting from the
random-coupling model [35] and from fully microscopic
theory of inhomogeneity due to mesoscopic fluctuations
[13]. The emerging inhomogeneity is assumed to be weak,
var |∆| ≪ ⟨|∆|⟩2, and hence can be treated perturba-
tively starting with a homogeneous supercurrent state.
At the same time, we neglect thermal fluctuations assum-
ing (Tc−T )/Tc ≫ Gi, where Gi is the Ginzburg number.

Our main result is the expression for the correlation
functions of the order parameter ∆(r) and supercurrent
j(r) obtained as a function of the average dimensionless
superfluid velocity v = ξ⟨ṽs⟩. Figure 1 shows the out-
come of the numerical simulation for a particular realiza-
tion of inhomogeneity in the GL coefficient τ(r) at differ-
ent values of the superfluid velocity v. The order parame-
ter modulus shown by color is plotted in units of its value
∆v in the homogeneous case given by Eq. (11). The left
and right panels are obtained for v → 0 and v = 0.85 vc,
respectively, where vc is the maximal value of the su-
perfluid velocity in a homogeneous system. Comparison

between them clearly demonstrates that the magnitude
of spatial fluctuations both of |∆(r)| and j(r) grows with
the superfluid velocity. These findings are consistent with
the exact analytical expressions for the order parameter
and supercurrent correlation functions.
The paper is organized as follows. In Sec. II we in-

troduce the model and discuss the effects of thermal and
frozen-in-space fluctuations. Perturbative expansion in
the strength of inhomogeneity is developed in Sec. III,
which introduces the basic element of the theory, the
fluctuation propagator on top of the uniform supercur-
rent state. The supercurrent correlation function and the
correction to its average are calculated in Sec. IV. The
results are summarized in Sec. V. The technical details
of calculating the asymptotic behavior of the fluctuation
propagator can be found in Appendix A.

II. INHOMOGENEOUS SUPERCONDUCTOR
NEAR THE CRITICAL TEMPERATURE

A. Ginzburg-Landau functional

Description of a superconductor near the critical tem-
perature is based on the GL expansion of the free-energy
density in powers of the complex order parameter field
∆(r). In the presence of inhomogeneity, it can be written
in the form

F

ν
= ξ20 |∇∆|2 − [τ + τ1(r)]|∆|2 + β

2
|∆|4. (1)

Here τ = (Tc0 − T )/Tc0, β = 7ζ(3)/8π2T 2
c0, and ξ20 =

πℏD/8Tc0 in the dirty-limit considered [9] (ν is the den-
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sity of states at the Fermi energy and D is the diffusion
coefficient). The dimensionless distance to the transition
τ is positive in the superconducting phase and vanishes at
T = Tc0, which is the mean-field transition temperature
in a homogeneous system. The constant ξ0 is (up to a
numerical factor) the zero-temperature coherence length.
Comparing the quadratic terms in Eq. (1) yields an ex-
pression for the temperature-dependent coherence length
divergent at the transition:

ξ(T ) = ξ0/
√
τ = ξ0

√
Tc0/(Tc0 − T ). (2)

Inhomogeneity is naturally introduced as a random
variation of the coefficient τ , while the coefficients β and
ξ0, which remain finite at the second-order phase tran-
sition, are considered constant. A random field τ1(r) is
assumed to be Gaussian with the correlation function

⟨τ1(r)τ1(r′)⟩ = fτ (r− r′). (3)

It is characterized by the strength of local fluctuations,
⟨τ21 ⟩ = fτ (r = 0), and the correlation radius rc deter-
mined by the decay of fτ (r). In what follows we will
assume that inhomogeneity in the coefficient τ is short
range compared to the coherence length:

rc ≪ ξ(T ), (4)

which is always true near the transition. For example, the
mechanism of spontaneous inhomogeneity due to meso-
scopic fluctuations leads to rc ∼ ξ0 [13, 36], and the in-
equality (4) holds as long as Tc − T ≪ Tc (i. e., τ ≪ 1).
For short-range disorder specified by Eq. (4), all phys-
ical quantities (except for an unobservable shift of Tc,
see below) depend on the zero Fourier component of the
correlation function (3),

γinh = fτ (q=0) =

∫
fτ (r) d

dr ∼ ⟨τ21 ⟩rdc . (5)

The system described by Eq. (1) is often referred to as
the random-temperature model. Note however that for
short-correlated disorder in τ1(r) it cannot be interpreted
as a random-Tc model. With rc ≪ ξ(T ), no regions of
well-defined local Tc(r) exist, and emergent inhomogene-
ity of ∆(r) is a collective effect of many fluctuating do-
mains of size rc.

In the GL free energy density (1), we neglect the con-
tribution of the magnetic field H = rotA, both external
and induced. Specifically, we assume no external mag-
netic field and a weak enough magnetic field created by
the supercurrent. The latter is true for a thin film (thick-
ness dz) if its width in the direction perpendicular to
the current, w, is much smaller than the Pearl length
λPearl = λ2/dz [37], where λ = (ℏc/e)

√
β/32πνξ20τ is

the bulk penetration depth. In such a case, screening is
ineffective and the current flow (in the absence of inho-
mogeneity) is uniform across the sample.

In the absence of a magnetic field, one can still intro-
duce a vector potential A as a pure gauge, replacing the

j/
j 0

v

uniform

3D

2D

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

FIG. 2. Average supercurrent ⟨j⟩/j0 vs average dimensionless
superfluid velocity. Black line: the standard dependence (13)
in the uniform case. The critical current jc/j0 = 2/3

√
3 is

achieved at vc = 1/
√
3, the unstable unphysical branch with

v > vc is shown by the dashed line. Blue line: modification in
the 3D case given by Eq. (60) with τ3D

∗ /τ = 0.01. Red line:
modification in the 2D case given by Eq. (64) with τ2D

∗ /τ =
0.05. Shaded are fluctuation regions near the bare critical
velocity, vc − v ≲ δvd, with δv3 ∼ (τ3D

∗ /τ)1/3 and δv2 ∼
(τ2D

∗ /τ)2/5. The shown first-order perturbative corrections
are valid outside of the fluctuation region, at vc − v ≳ δvd.

gradient term in Eq. (1) by the long derivative:

|∇∆|2 → |(∇+ iA)∆|2 . (6)

The expression for the supercurrent density then reads

j = η

(
|∆|2A+

∆∗∇∆−∆∇∆∗

2i

)
, (7)

with the coefficient η = 4eνξ20/ℏ. Written in terms of the
absolute value and phase of the order parameter, ∆ =
|∆|eiϕ, it takes the form

j = η|∆|2ṽs, (8)

where

ṽs = ∇ϕ+A (9)

is a gauge-invariant phase gradient proportional to the
superfluid velocity. The choice of a particular gauge is a
matter of convenience that will be discussed below.
In the mean-field approximation, the order parameter

field satisfies the GL equation

−ξ20(∇+ iA)2∆− [τ + τ1(r)]∆ + β|∆|2∆ = 0. (10)

In the absence of inhomogeneity, a uniform supercur-
rent suppresses the absolute value of the order parameter
|∆| = ∆v according to

∆2
v = ∆2

0(1− v2), (11)

where ∆0 =
√
τ/β and v is the dimensionless superfluid

density,

v = ξṽs. (12)
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The current density (8) is given by the textbook expres-
sion [38]

j = j0(1− v2)v, (13)

where

j0 =
τη

βξ
=

τ3/2η

βξ0
. (14)

The dependence of the supercurrent on the superfluid
velocity given by Eq. (13) is shown in Fig. 2 by the black

curve. The critical current is achieved at vc = 1/
√
3.

The non-physical branch with v > vc is marked by the
dashed line.

In the presence of random τ1(r), Eq. (10) becomes a
stochastic nonlinear differential equation. Then the or-
der parameter ∆(r) and hence the supercurrent j(r) de-
fined by Eq. (7) also become random quantities. Below
we will analyze their statistical properties assuming that
spatial fluctuations are weak and can be treated within
the lowest order of the perturbation theory. Though the
most pertinent application of our theory is related to thin
films (two-dimensional case, 2D), we will also discuss the
bulk geometry (three-dimensional case, 3D) for pedagog-
ical purposes. The difference between the two limits is
mainly in the relation between the film thickness dz and
the coherence length ξ(T ). To be specific, the 2D case
refers to rc ∼ dz ≪ ξ ≪ λPearl, while the 3D case is
realized for rc ≪ ξ ≪ dz ≪ λPearl.

B. Thermal fluctuations vs inhomogeneity

1. Thermal fluctuations in a homogeneous medium

The GL functional (1) with τ1(r) = 0 is a paradigmatic
model for describing second-order phase transitions in ho-
mogeneous systems. Sufficiently far from the transition
the order parameter is well described by the mean-field
approximation, while in the vicinity of Tc the increas-
ing role of thermal fluctuations causes a change in the
critical behavior [39, 40]. The relative width of the tem-
perature region where thermal fluctuations are relevant
is characterized by the dimensionless Ginzburg number
[41, 42]

Gi ∼
(

1

νdξd0Tc

)2/(4−d)

, (15)

where d is the effective dimensionality of the problem and
νd is the corresponding density of states (ν3 = ν in 3D,
and ν2 = νdz in 2D, with dz being the film thickness).
In addition to modification of the critical indices, ther-

mal fluctuations result in a shift of the critical tempera-
ture from the bare (and unobservable) value Tc0 to the
actual Tc [42, 43]. This shift can be obtained from the
simple loop diagram for the self-energy shown in Fig.

(a) (b)

FIG. 3. The simplest self-energy diagrams due to (a) thermal
fluctuations, Σth, and (b) inhomogeneity, Σdis. The dashed
line stands for the correlator ⟨τ1(r)τ1(r′)⟩. For short-range
disorder, both diagrams diverge in the ultraviolet in a similar
fashion.

3(a), which in the normal phase (τ < 0) is given by

Σth = −2β⟨|∆(r)|2⟩ = −2T

νd
β

∫
(dq)

|τ |+ ξ20q
2
, (16)

where (dq) ≡ ddq/(2π)d. This momentum integral di-
verges in the ultraviolet for space dimensions d ≥ 2. The
divergence should be compensated by subtracting a coun-
terterm,

Σth → Σth − Σth
τ=0, (17)

with a simultaneous renormalization of the coefficient τ .
The shift of the critical temperature is determined by the
relation Tc−Tc0 = Tc0Σ

th(Tc,k = 0). The negative value
of the diverging self-energy (16) indicates that thermal
fluctuations suppress Tc.

2. Phase transition in an inhomogeneous system

The random-temperature model (1) with τ1(r) ̸= 0 (as
well as a somewhat different random-field model) is a
standard playground for studying the effect of quenched
disorder on the second-order phase transitions [44–46].
Here the main focus of theoretical research was under-
standing the impact of disorder on the critical behavior.
According to the Harris criterion [47], irregularity of the
system’s parameters is irrelevant if the clean-system spe-
cific heat index is negative, α < 0. Otherwise, the critical
exponents at the phase transition are controlled by dis-
order modifying the renormalization group flow [44, 45].
While renormalization group is a sophisticated method

of summing perturbative corrections, there exists a non-
perturbative effect of disorder related to formation of rare
localized islands of the ordered phase above the transition
(Griffiths phase). Appearance of such disorder-induced
droplets results in a nonanalytic—yet hardly experimen-
tally observable—contribution to the free energy [46, 48].
Finally, quenched randomness in the GL free energy

(1) is also responsible for the change of the critical tem-
perature. This shift is determined by the diagram Σdis

shown in Fig. 3(b), which for a short-range disorder with
rc ≪ ξ behaves similar to its analog Σth due to ther-
mal fluctuations [see Fig. 3(a)], with the formal replace-
ment β → −(νd/2T )γinh, where γinh is the inhomogeneity
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strength defined in Eq. (5). Following the reasoning of
Sec. II B 1, we conclude that the ultraviolet divergency
of the self-energy Σdis should be absorbed into a redef-
inition of Tc. Note that while Σth is negative, Σdis is
positive, and therefore the effect of inhomogeneity is to
increase the critical temperature.

The relative strength of quenched disorder is charac-
terized by the dimensionless number [for the exact defi-
nitions, see Eqs. (53) and (55)]

τ∗ ∼
(
γinh
ξd0

)2/(4−d)

, (18)

with γinh given by Eq. (5). For inhomogeneous systems,
the parameter τ∗ plays the role of the Ginzburg number
(15) in the theory of thermal fluctuations. Both deter-
mine the width of the temperature regions near Tc, where
frozen-in-space/thermal fluctuations become strong. The
mean-field description is valid as long as

τ ≫ max(Gi, τ∗). (19)

In what follows we assume that this inequality holds and
consider the effect of a weak inhomogeneity in the leading
order in τ∗/τ . Since τ ≫ Gi, thermal fluctuations will
not wash out the effect of inhomogeneity.

III. PERTURBATION THEORY

A. Recursive determination of ∆

The nonlinear stochastic GL equation (10) can be for-
mally solved by perturbative series expansion in τ1(r) on
top of the uniform supercurrent state. To describe the
latter, we choose the real gauge with ϕ = 0, A = ṽs and
∆ = ∆v, as given by Eq. (11). For a finite τ1(r), we write
the order parameter as

∆(r) = ∆v +∆1(r) + ∆2(r) + . . . , (20)

where ∆n scales as the nth power of τ1. In the presence of
a supercurrent, inhomogeneities affect both the absolute
value and the phase of the order parameter, so ∆n(r)
are complex numbers. It is convenient to organize ∆n

and ∆∗
n into a 2-vector, which will enable us to formu-

late a theory without the use of the complex conjugation
operation.

Substituting the expansion (20) into the GL equation
(10) and its conjugate, and balancing equal powers of τ1,
we arrive at a set of recursive relations:

L−1

(
∆n(r)
∆∗

n(r)

)
= Πn(r), (21)

where L−1 is a differential matrix operator

L−1 = −ξ20(σ0∇2 + 2iAσ3∇) + β∆2
v(σ0 + σ1), (22)

σi being the Pauli matrices. The vectors Πn(r) contain
only τ1(r) and ∆k(r) with k < n. The first two vectors
are given by

Π1 = ∆v

(
τ1
τ1

)
, (23a)

Π2 =

(
τ1∆1 − β∆v(∆

2
1 + 2∆1∆

∗
1)

τ1∆
∗
1 − β∆v(∆

∗2
1 + 2∆1∆

∗
1)

)
. (23b)

Solving equations (21) step by step, one can determine
all terms in the perturbative expansion (20) in powers
of τ1 for a given inhomogeneity realization. Graphically,
this procedure corresponds to the summation of tree-like
diagrams. The absence of closed loops [as in Fig. 3(a)]
corresponds to the neglect of thermal fluctuations.

B. Fluctuation propagator

The key ingredient of the theory is the fluctuation
propagator L, the resolvent of the differential operator
in Eq. (22). (A conventional definition of the fluctuation
propagator contains the factor of T [42]. On a tree level
considered, it is completely compensated by the factors
1/T from the vertices in the Gibbs weight.) In real space,
L(r, r′) is an integral kernel depending on the coordinate
difference. In the momentum space, it takes the form

L(q) =
ξ20(q

2σ0 − 2Aqσ3) + β∆2
v(σ0 − σ1)

D(q)
, (24)

with D(q) = detL−1(q) given by

D(q) = ξ40 [q
4 − 4(Aq)2] + 2β∆2

vξ
2
0q

2. (25)

It is convenient to introduce the dimensionless momen-
tum normalized by the temperature-dependent coherence
length:

q′ = ξq. (26)

Then the function D(q) acquires the form:

D(q) = τ2[q′4 + 2(1− v2)q′2 − 4v2q′2x ], (27)

where v = ξA is the dimensionless superfluid velocity
introduced in Eq. (12), and the current j ∥ A is assumed
to flow in the x direction.
In the absence of a supercurrent (A = 0), the deter-

minant factorizes: D(q) = ξ20q
2(ξ20q

2 + 2τ). That corre-
sponds to decoupling (at the Gaussian level) of massive
fluctuations of the order parameter modulus and mass-
less fluctuations of the order parameter phase (Goldstone
mode), with the isotropic propagators given by, respec-
tively,

L
(0)
∥ (q) =

1

ξ20q
2 + 2τ

, L
(0)
⊥ (q) =

1

ξ20q
2
. (28)
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In the coordinate representation, L
(0)
∥ (r) is the Yukawa

potential:

L
(0)
∥ (r) =

{
K0(

√
2r/ξ)/2πξ20 , 2D,

exp(−
√
2r/ξ)/4πξ20r, 3D,

(29)

where K0 is the modified Bessel function.
The fluctuation propagator on top of a uniform super-

current state with A ̸= 0 describes a nontrivial mixing of
the amplitude and phase modes. Physically, this mixing
is a consequence of the current conservation respected by
the GL equation. Therefore, in a supercurrent state any
change of the order parameter modulus should be com-
pensated by an appropriate change of its phase to ensure
a divergence-free current [32]. The fluctuation propa-
gator in the one-dimensional geometry (current-carrying
superconducting wire) were studied in Ref. [49] in order
to describe fluctuations around the Langer-Ambegaokar
instanton [50].

The mixing of the amplitude and phase modes can be
seen in the eigenvalues of the matrix L−1(q), which are
given by

Λ±(q) = τ
[
1− v2 + q′2 ±

√
(1− v2)2 + 4v2q′2x

]
. (30)

In the absence of a supercurrent, Λ+(q) and Λ−(q) cor-
respond to the amplitude and phase modes, respectively.
For a finite A, Λ±(q) can no longer be interpreted as en-
ergies of appropriately gapped parabolic bands, in con-
trast to Eq. (28). In addition, the q dependence of the
eigenvalues Λ±(q) becomes essentially anisotropic.

The lowest eigenvalue, Λ−(q), describes a Goldstone
mode with Λ−(0) = 0. Its behavior is fundamentally
different for v < vc and v > vc. At the physical branch
(v < vc), Λ−(q) > 0 for all finite momenta. Whereas
at the unphysical branch (v > vc), the function Λ−(q)
becomes negative in some region of the momentum space
in the vicinity of q = 0 that signals instability of the
unphysical branch.

C. Modulus response

To visualize the spatial structure of the fluctuation
propagator, it is instructive to look at the linear com-
bination of its four elements,

L = (L11 + L12 + L21 + L22)/2, (31)

which determines the response of the order parameter
modulus to spatial variations of the GL coefficient τ [see
Eqs. (42) and (43) below]. In the momentum represen-
tation, it reads

L(q) = ξ20q
2

D(q)
=

q′2

τ [q′4 + 2(1− v2)q′2 − 4v2q′2x ]
, (32)

with the dimensionless momentum q′ defined in Eq. (26).

-10 -5 0 5 10
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FIG. 4. Spatial dependence of the 2D fluctuation propagator
L(r) (in units of 1/2πτξ2) for v/vc = 0.95. The isotropic peak
at r ≪ ξ, L(r) ≈ ln(1/r)/2π, crosses over to an anisotropic
power-law decay (33) at r ≫ ξ.

Figure 4 shows L(r) in the 2D geometry for the su-
perfluid velocity close to the critical one, v/vc = 0.95.
At the smallest scales, r ≪ ξ, the fluctuation propagator
L(r) follows the zero-current limit of the amplitude mode

L
(0)
∥ (r) given by Eq. (29).

A new feature arising in the presence of a supercurrent
is that in the limit of large r the fluctuation propagator
does not decay exponentially, but exhibits a much slower
power-law dependence with the exponent equal to the
space dimensionality d:

Lfar(r) ≈ v2

2πτ

λd(v, θ)

rd
, (33)

where θ is the angle the vector r makes with the x-axes
(direction of A). The power-law behavior of the modu-
lus response L(r) is a consequence of mixing between the
massive and massless modes of the zero-current fluctua-
tion propagators [Eq. (28)] at a finite A.
The asymptotic behavior (33) is obtained by neglecting

the quartic term in the denominator of Eq. (32), writing
it through the Laplace transform, taking the Gaussian
integral over q, and performing the final elementary in-
tegration. This way we get in the 2D and 3D cases:

λ2 =
1− 3v2 − 2(1− 2v2) cos2 θ√

(1− v2)(1− 3v2)(1− 3v2 + 2v2 cos2 θ)2
, (34)

λ3 =
1− 3v2 − (3− 5v2) cos2 θ

2
√
1− v2(1− 3v2 + 2v2 cos2 θ)5/2

. (35)

Both functions are negative for 0 ≤ θ < θd(v) and pos-
itive for θd(v) < θ ≤ π/2 [see Fig. 4]. The angle θd(v)
separating the two regimes is given by (d = 2, 3)

cos2 θd(v) = (1− 3v2)/[d− (d+ 2)v2]. (36)
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It approaches π/2 at criticality, v → vc, indicating that
in the far asymptotics (33) the propagator is negative
everywhere except for a small sector near the y axes [for
the parameters of Fig. 4, θ2(a) = 0.77π/2]. At the same
time, the narrow peak of Lfar(r) in the direction perpen-
dicular to the current is much higher than its behavior
along the current, λd(π/2)/|λd(0)| ∼ (vc − v)−d/2.
Right at the criticality (v = vc), the fluctuation prop-

agator L(r) in the 2D geometry can be evaluated in a
closed form. To this end we note that its Fourier trans-
form may be written as L(q) = Re τ−1/(q′2 + 2iq′y/

√
3).

Writing it through the Laplace transform renders q inte-
gration Gaussian, and after some algebra we arrive at

Lcrit
2D (r) =

1

2πτξ2
K0

(√
x2 + y2

3ξ2

)
cosh

y√
3ξ

. (37)

Remarkably, its dependence along the current (x axis)
coincides—up to coordinate rescaling by the factor of√
6—with that at A = 0 [Eq. (29)], showing an exponen-

tial decay at x ≫ ξ. However, the decay of correlations
perpendicular to the current (y axis) is only power-law:
Lcrit
2D (0, y) ∝ y−1/2.
In the 3D case the propagator at the criticality cannot

be obtained in a closed form. Its log-distance tail contains
a messy combination of hypergeometric functions, so we
present only its asymptotic behavior along the main axes:

Lcrit
3D (r) ≈


− 3

4πτ

1

x3
, x → ∞,

0.025

τξ3/2
1

y3/2
, y → ∞.

(38)

[The number in the last line stands for the exact expres-
sion 31/4Γ(3/4)/25/2πΓ(1/4).]
To conclude this Section let us discuss how and when

various asymptotic regimes mentioned above transform
into each other.

For small currents (v ≪ vc), the propagator L(r) fol-
lows the Yukawa potential (29) up to r/ξ ∼ ln(1/v) ≫ 1,
where its exponential decay crosses over to the power-law
behavior Lfar(r) given by Eq. (33).

For nearly critical currents (vc−v ≪ vc), the propaga-
tor follows it critical asymptotics Lcrit(r) at small r and
far asymptotics Lfar(r) at large r. In the 3D geometry,
there is a direct crossover between these regimes taking
place at

rc(θ) ∼ ξ
[
(vc − v) cos2 θ + (vc − v)2

]−1/2 ≫ ξ (39)

[note that different scaling of rc(θ) with vc − v along
the x and y axes is consistent with different power-law
asymptotics (38)]. On the contrary, in the 2D case, a
new intermediate asymptotic region appears between the
small- and large-r types of behavior, where the fluctua-
tion propagator is nearly constant:

Lint
2D(r) ≈ −33/4

√
vc − v

2πτξ2
. (40)

This new regime is realized at r2(θ) ≲ r ≪ rc(θ), where

r2(θ) ∼
√
3 ξ

2(1− | sin θ|)
ln

1

vc − v
≫ ξ. (41)

In narrow sectors around θ = ±π/2, where r2(θ) > rc(θ),
there is a direct crossover between Lcrit(r) and Lfar(r)
taking place at rc(θ). Derivation of Eq. (40) is presented
in Appendix A.

D. Lowest-order corrections ∆1 and ∆2

Now we proceed to the step-by-step determination of
the terms ∆n in the perturbative expansion (20) in pow-
ers of τ1. Solving Eq. (21) for n = 1 with Π1 given by
Eq. (23a), we obtain for the first correction:(

∆1(q)
∆∗

1(q)

)
= ∆v

(
M(q)
M(−q)

)
τ1(q), (42)

where M(q) = L11(q) + L12(q) = L21(−q) + L22(−q) is
given by

M(q) =
ξ20(q

2 − 2Aq)

D(q)
. (43)

Since M(q) ∝ 1/q2 for large q, all correlation functions
of ∆1 and ∆∗

1 converge in the ultraviolet. The response
of the order parameter modulus discussed in Sec. III C
is governed by L(q) = [M(q) +M(−q)]/2, see Eqs. (31)
and (32).
In a similar way, the quadratic-in-τ1 correction, ∆2(r),

can be obtained from the recursive equation (21), with Π2

given by Eq. (23b) and ∆1 taken from Eq. (42). Since we
are going to study statistics of the order parameter and
supercurrent in the lowest order in inhomogeneity, we
will need only the average value of the second correction,
⟨∆2(r)⟩. The latter is determined by Eq. (21) with the
space-independent ⟨Π2(r)⟩ in the right-hand side. The
resulting equation for ⟨∆2⟩ should be solved with care.
An attempt to do that in the momentum space by invert-
ing L−1 fails since L(q) is ill-defined at q = 0. Instead,
we will look at Eq. (21) for ⟨∆2(r)⟩ in real space, that
allows us to clarify the origin of the above ambiguity.
First, we note that the two components of the vector

⟨Π2⟩ are equal to each other. Second, we restrict ⟨∆2(r)⟩
and ⟨∆∗

2(r)⟩ to the class of functions that are constant
or linear in r, since other choices contradict space unifor-
mity. Neglecting then the second derivative, we present
Eq. (21) for ⟨∆2(r)⟩ in the form

A∇⟨Re∆2(r)⟩ = 0, (44a)

ξ20A∇⟨Im∆2(r)⟩+ β∆2
v⟨Re∆2(r)⟩ = ⟨Π2⟩/2. (44b)

This system of equations tells us that ⟨Re∆2⟩ is con-
stant in space, but does not fix its value that depends
on ∇⟨Im∆2(r)⟩, which has the meaning of an additional
phase gradient of the order parameter field.
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Hence the ambiguity in the determination of ⟨∆2(r)⟩
is related to the fact that a brute-force perturbation the-
ory in τ1 leaves the average value of the superfluid ve-
locity unspecified, as long as no boundary condition on
the phase is imposed. The boundary condition is our
freedom, and we choose it by requiring that the average
superfluid velocity ⟨ṽs⟩ is not renormalized in the pres-
ence of inhomogeneity and is still given by A. In terms
of the average second-order correction, this means

⟨∆2⟩ = ⟨∆∗
2⟩ = ⟨Π2⟩/2β∆2

v. (45)

The same reasoning can be applied to higher-order terms
∆2n. As a result, we arrive at a theory, where the su-
percurrent is obtained perturbatively for a given value of
the average superfluid velocity ⟨ṽs⟩ = A.

E. Average |∆|2

The average value of |∆(r)|2 is given by

⟨|∆|2⟩ = ∆2
v +∆v⟨∆2 +∆∗

2⟩+ ⟨∆∗
1∆1⟩+ . . . , (46)

where ∆v is the order parameter in the presence of the
supercurrent, see Eq. (11). With the help of Eqs. (23b)
and (45) we obtain in the lowest order in fτ :

⟨|∆|2⟩ = ∆2
v + ⟨τ1∆1⟩/β∆v − ⟨∆2

1⟩ − ⟨∆∗
1∆1⟩+ . . . (47)

While the last two terms in Eq. (47) are determined
by large scales [see discussion below Eq. (43)], the term
⟨τ1∆1⟩ diverges in the ultraviolet for short-range inhomo-
geneities with rc ≪ ξ. It is this term, which is responsible
for the shift of Tc by quenched disorder in the GL coeffi-
cient τ . As explained in Sec. II B 2, the effect of fluctu-
ations on the critical temperature is taken into account
by simultaneously (i) replacing the bare and unobserv-
able value of Tc0 with the actual Tc and (ii) regularizing
all ultraviolet correlation functions according to

⟨τ1∆1⟩ → ⟨τ1∆1⟩reg ≡ ⟨τ1∆1⟩ − ⟨τ1∆1⟩A=0,τ=0. (48)

Using Eq. (42) and averaging with the help of Eq. (3),
we obtain

⟨τ1∆1⟩reg = ∆v

∫
(dq)fτ (q)

[
ξ20q

2

D(q)
− 1

ξ20q
2

]
= γinh∆v

∫
(dq)

4ξ20(Aq)2 − 2β∆2
vq

2

q2D(q)
. (49)

In what follows it will be assumed that the regu-
larization (49) has been performed. After subtracting
the counterterm, the momentum integration converges
in the ultraviolet, and therefore we have replaced fτ (q)
by γinh = fτ (q=0) and taken it out of the integral sign.
As there are no other ultraviolet divergences in the the-
ory, γinh is the only attribute of disorder that will appear
hereafter.

As a result, we obtain for the average square of the
modulus of the order parameter:

⟨|∆|2⟩ = ∆2
v +

γinh
β

∫
(dq)

[
ξ20q

2

D(q)
− 1

ξ20q
2
− 2β∆2

vξ
4
0q

4

D2(q)

]
.

(50)
In order to illustrate the effect of inhomogeneity it is

instructive to study ⟨|∆(r)|2⟩ in the absence of a super-
current (A = 0):

⟨|∆|2⟩A=0 =
τ

β

[
1− 4γinh

∫
(dq)(ξ20q

2 + τ)

ξ20q
2(ξ20q

2 + 2τ)2

]
. (51)

In the 3D case, the integral is determined by q ∼ 1/ξ
(the relevant spatial scale is ξ), and we obtain

⟨|∆|2⟩3DA=0

τ/β
= 1−

√
τ3D∗
τ

, (52)

where we have defined

τ3D∗ =

(
3γinh

25/2πξ30

)2

, (53)

in accordance with Eq. (18).
The 2D case is marginal. Here the momentum inte-

gral in Eq. (51) logarithmically diverges in the infrared
[which is an artifact of the ultraviolet regularization (48)]
and should be cut off at some large scale L∗. The proper
choice of L∗ has been discussed both in the context of
thermal fluctuations in homogeneous systems [42, 43]
and frozen-in-space fluctuations in inhomogeneous sys-
tems [36]. In both cases, the cutoff scale L∗ is identified
with the coherence length at the border of the fluctuation
region, at δTc/Tc equal to either Gi or τ∗, respectively.
Thereby we obtain

⟨|∆|2⟩2DA=0

τ/β
= 1− τ2D∗

τ
ln

τ

τ2D∗
, (54)

where the transition smearing due to inhomogeneity is

τ2D∗ =
γinh
4πξ20

, (55)

providing a numerical coefficient to Eq. (18). Equation
(54) written with logarithmic accuracy is valid outside
the fluctuation region, at τ ≫ τ2D∗ .
Equations (52) and (54) demonstrate that frozen-in-

space fluctuations of ∆(r) induced by quenched inhomo-
geneity in the GL coefficient τ lead to the suppression
of the average ⟨|∆(r)|2⟩ compared to its mean-field value
τ/β (after renormalizing Tc). These fluctuations become
strong at τ ≲ τ∗ that changes the nature of the transition
and requires a nonperturbative treatment. Only signif-
icantly below the (renormalized) Tc, at τ ≫ τ∗, spatial
fluctuations are weak, and their perturbative effect on
the average ⟨|∆(r)|2⟩ is given by Eq. (52) and (54).
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IV. SUPERCURRENT STATISTICS

A. Average supercurrent

Now we proceed to calculating the average supercur-
rent induced by the average superfluid velocity ⟨ṽs⟩ = A.
According to Eq. (7), the current is a sum of two contri-
butions, j = j1 + j2. Averaging the first term produces
⟨j1⟩ = η⟨|∆|2⟩A, where ⟨|∆|2⟩ is given by Eq. (50). For
the second term we obtain

⟨j2⟩ = η∆2
vγinh

∫
(dq)qM2(q). (56)

Substituting M(q) from Eq. (43), we see that the result-
ing vector is aligned along A and arrive at

⟨j2⟩ = −4η∆2
vγinhA

∫
(dq)

ξ40q
2q2x

D2(q)
. (57)

Adding the two contributions, we come to the following
expression for the average supercurrent:

⟨j⟩ = η

[
∆2

v +
γinh
β

∫
(dq)K(q)

]
A, (58)

where

K(q) =
ξ20q

2

D(q)
− 1

ξ20q
2
− 2β∆2

vξ
4
0q

2(q2 + 2q2x)

D2(q)
. (59)

Equation (58) describes the lowest-order perturbative
correction to the average current, which takes into ac-
count both modification of the order-parameter modulus
and redistribution of its phase.

1. Average current in 3D

In the 3D geometry, the momentum integral (58) is
easily evaluated in spherical coordinates and we obtain
the following correction to the standard homogeneous re-
lation (13):

⟨j⟩ = j0

[
1− v2 +

√
τ3D∗
τ

R3(v)

]
v, (60)

where the parameter τ3D∗ quantifying the inhomogeneity
strength is introduced in Eq. (53), and the dimensionless
function R3(v) is given by

R3 =
(1− 3v2)3/2

6v2
−

(1− v2)(1 + 3v2) arcsin
√

2v2

1−v2

6
√
2v3

.

(61)
The function R3(a) is negative for all physically avail-

able phase gradients, 0 < v < vc, indicating the suppres-
sion of the average current by quenched inhomogeneities.

In the limit of small v, one finds R3(v) ≈ −11/9, which
translates into the suppression of the superfluid density:

δns

ns
= −11

9

√
τ3D∗
τ

. (62)

At v → vc, the function R3(v) remains finite but exhibits
a non-analytic square-root behavior:

R3(v) ≈ −π/
√
6 + 21/231/4

√
vc − v. (63)

The dependence of the average current as a function of
the average superfluid velocity in the 3D case obtained
from Eqs. (60) and (61) for τ3D∗ /τ = 0.01 is shown in
Fig. 2 by the blue line.

2. Average current in 2D

In the 2D geometry, the momentum integral (58) is
easily evaluated in polar coordinates. Cutting the inte-
gral logarithmically divergent in the infrared at L∗ as
discussed in Sec. III E, we obtain

⟨j⟩ = j0

[
1− v2 +

τ2D∗
τ

R2(v)

]
v, (64)

where the parameter τ2D∗ is defined in Eq. (55) and the
dimensionless function R2(v) is given by

R2(v) = − ln
τ

τ2D∗
− 2 ln

√
1− v2 +

√
1− 3v2

2

− 1

v2

( √
1− v2√
1− 3v2

− 1

)
. (65)

In this formula, the contribution of ⟨j2⟩ [see Eq. (57)] is

−
√
1− v2/

√
1− 3v2, while the rest is the contribution of

⟨j1⟩ proportional to ⟨|∆|2⟩. The latter reduces to (54) at
vanishing current.
Like in the 3D case, the function R2(v) is negative for

0 < v < vc. In the limit of small v, with logarithmic
accuracy R2(v) is determined by the first term, and for
the suppression of the superfluid density we obtain

δns

ns
≈ −τ2D∗

τ
ln

τ

τ2D∗
. (66)

In the vicinity of the bare critical current, at v → vc, the
function R2(v) diverges in a square-root manner:

R2(v) ≈ const− 31/4/
√
vc − v. (67)

The dependence of the average current as a function of
the average superfluid velocity in the 2D case obtained
from Eqs. (64) and (65) for τ2D∗ /τ = 0.05 is shown in
Fig. 2 by the red line.
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3. Region of strong fluctuations near criticality

Our results for the average current, Eqs. (60) and (64),
are inapplicable in the vicinity of the bare critical current.
Indeed, due to the power-law dependence of Rd(v) at
v → vc [Eqs. (63) and (67)], the average current has a
maximum at v = vc − δvd, where δvd depends of the
effective dimensionality:

δv3 ∼
(
τ3D∗
τ

)1/3

, δv2 ∼
(
τ2D∗
τ

)2/5

. (68)

In a small region near the critical current, at v ≳ vc−δvd,
the derivative d⟨j⟩/dv becomes negative, signaling insta-
bility of the corresponding branch. Physically it is re-
lated to the breakdown of the first-order perturbation
theory at vc − v ≲ δvd. For such small deviations from
vc, the inhomogeneity-induced self-energy for the fluctu-
ation propagator L becomes comparable to the lowest
eigenvalue Λ− of the bare L−1 that vanishes at vc as
discussed in Sec. III B.

Hence, the region vc − v ≲ δvd is a fluctuation region,
where system’s properties are determined by summation
of an infinite series of diagrams that will be analyzed
elsewhere. The first-order perturbative corrections (60)
and (64) are valid outside the fluctuation region, at

vc − v ≫ δvd. (69)

The fluctuation region is shaded in Fig. 2.
Note that the singular behavior of R2(v) in 2D given

by Eq. (67) comes from large scales r∗(δv) ∼ ξ/
√
δv.

In order for the theory to be self-consistent, this scale
should be smaller than the infra-red regularizing length
L∗ ∼ ξ(τ/τ2D∗ )1/2 introduced in Sec. III E. Taking r∗ at
the border of the fluctuation region, δv ∼ δvd, we see
that indeed r∗(δv2) ≪ L∗ since we are always working in
the limit τ ≫ τ2D∗ .

B. Supercurrent correlation function

In order to characterize current fluctuations in the low-
est order in inhomogeneity strength, it is sufficient to
consider the first perturbative correction to the uniform
current, δj(r). Substituting expansion (20) into Eq. (7),
we obtain

δj = η∆0

[
A(∆1 +∆∗

1) +
∇∆1 −∇∆∗

1

2i

]
. (70)

With the help of Eq. (42) we get for the i’th component
of δj(q):

δji(q)

j0(a)
=

2τ1(q)

τ

q′2δix − q′iq
′
x

q′4 + 2(1− v2)q′2 − 4v2q′2x
, (71)

where q′ is the dimensionless momentum, see Eq. (26).

Averaging over inhomogeneities with rc ≪ ξ, replacing

fτ (q) by γinh = fτ (q=0) and converting it to τ
(d)
∗ with

the help of Eqs. (53) and (55), we obtain the correlation
function of current fluctuations for d = 2, 3:

⟨δji(0)δjj(r)⟩
j20(a)

=

(
τ
(d)
∗

τ

)2−d/2

C
(d)
ij (r), (72)

where the tensor Cij(r) is defined as

C
(d)
ij (r) = γd

∫
(dq′)eiq

′r/ξ
(q′2δix − q′iq

′
x)(q

′2δjx − q′jq
′
x)

[q′4 + 2(1− v2)q′2 − 4v2q′2x ]2

(73)
with γd = 26−d/2π/d. The relative magnitude of current

fluctuations (72) is governed by the factor (τ
(d)
∗ /τ)2−d/2,

while the dimensionless tensor C
(d)
ij (r) describes their

spatial and v dependence. For a generic r, all components

of C
(d)
ij (r) are nonzero and typically cannot be obtained

in a closed form. Below we present analytic results for
the correlators at coincident points and their far asymp-
totics.
At coincident points, the tensor C

(d)
ij (0) is diagonal and

uniaxial, with x being the principal axis, and the momen-
tum integration in Eq. (73) can be done analytically. In
the 2D geometry,

C2D
xx (0) =

1

2v2

[
(1− 3v2)

√
1− 3v2

1− v2
− 1 + 4v2

]
, (74)

C2D
yy (0) =

1

2
[
1− 2v2 +

√
(1− v2)(1− 3v2)

] , (75)

while in the 3D case

C3D
xx (0) =

(3− 22v2 + 51v4)σ(v)− 3(1− 5v2)ρ(v)

29/23v5
, (76)

C3D
yy (0) =

(3− 7v2)ρ(v)− (3− 14v2 + 11v4)σ(v)

211/23v5
, (77)

where we introduced σ(v) = arctan
√
2v2/(1− 3v2) and

ρ(v) =
√
2v2(1− 3v2). By symmetry, C3D

zz (0) = C3D
yy (0).

Equations (74)–(77) describe smooth monotonically in-
creasing functions, taking finite positive values both at
v = 0 and v = vc.
The asymptotic behavior of the current correlation

functions in the limit r → ∞ can be obtained by ne-
glecting the quartic term in the denominator of Eq. (32)
and using the Laplace transform. Similar to Eq. (33), we
obtain a power-law decay with the exponent d. In the
2D case,

C2D
xx (r) =

ξ2

r2
(1− 3v2)1/2P 2D

x (θ)

(1− v2)3/2Π3(θ)
, (78)

C2D
yy (r) =

ξ2

r2
P 2D
y (θ)

(1− v2)1/2(1− 3v2)1/2Π3(θ)
, (79)

where Π(θ) and Px,y(θ) are given by

Π(θ) = 1− 3v2 + 2v2 cos2 θ (80)
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FIG. 5. Function C2D
xx (r) that determines the correlation func-

tion ⟨δjx(0)δjx(r)⟩ of longitudinal currents in the 2D case at
v/vc = 0.95.

and

P 2D
x (θ) =− (1− 3v2)2 − 4(1− 3v2) cos2 θ

+ 4(2− 6v2 + 3v4) cos4 θ, (81)

P 2D
y (θ) =− (1− 3v2)2 + 4(2− 9v2 + 9v4) cos2 θ

− 4(2− 8v2 + 7v4) cos4 θ. (82)

In the 3D case, the longitudinal and transverse correla-
tors have the asymptotic behavior

C3D
xx (r) =

ξ3

r3
(1− 3v2)P 3D

x (θ)√
18(1− v2)3/2Π7/2(θ)

, (83)

C3D
yy (r) + C3D

zz (r) =
ξ3

r3
P 3D
⊥ (θ)√

18(1− v2)1/2Π7/2(θ)
, (84)

with

P 3D
x (θ) =− (1− 3v2)2 − 2(3− 10v2 + 3v4) cos2 θ

+ (15− 42v2 + 23v4) cos4 θ, (85)

P 3D
⊥ (θ) =− (1− 3v2)2 + 4(3− 13v2 + 12v4) cos2 θ

− (15− 54v2 + 43v4) cos4 θ. (86)

In the 2D geometry, the spatial dependence of the lon-
gitudinal, ⟨δjx(0)δjx(r)⟩, and transverse, ⟨δjy(0)δjy(r)⟩,
current correlation functions at v/vc = 0.95 is shown in
Figs. 5 and 6, respectively. Both functions are notably
anisotropic and demonstrate anticorrelations at large y.
Also negative is ⟨δjy(0)δjy(r)⟩ for large x, in accordance
with Eqs. (74) and (75).

C. Numerical simulation

Figure 1 demonstrates the result of numerical simula-
tion of the modulus of the order parameter (color map)
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FIG. 6. Function C2D
yy (r) that determines the correlation func-

tion ⟨δjy(0)δjy(r)⟩ of transverse currents in the 2D case at
v/vc = 0.95.

and supercurrent (current flow lines) in the 2D geom-
etry at τ2D∗ /τ = 0.01. The left and right panels are
obtained for the same realization of τ1(r) but at differ-
ent values of the average superfluid velocity: v/vc → 0
and v/vc = 0.85, respectively. One can clearly see that
increasing the current enhances fluctuations of |∆(r)|
and renders the supercurrent pattern more inhomoge-
neous. The latter effect can be quantified by the root
mean square of the angle ϑ between the local supercur-
rent and the direction of the average superfluid velocity.
Since ϑ = jy/j0, ⟨ϑ2⟩ is proportional to Cyy(0) given
by Eq. (75). This correlation function at v = 0.85 vc is
2.05 times larger than at v = 0. Hence the typical angle
⟨ϑ2⟩1/2 at v = 0.85 vc should be 43% larger than that at
a vanishing bias, in accordance with Fig. 1.

V. CONCLUSION

In this paper we have developed an analytical ap-
proach to the problem of the supercurrent flow in in-
homogeneous superconductors. Our theory based on the
Ginzburg-Landau expansion is applicable in the vicinity
of Tc, where any microscopic mechanism of inhomogene-
ity formation manifests itself as a random correction of
the form τ1(r)|∆(r)|2 to the quadratic term in the free en-
ergy. The resulting random-temperature ϕ4 theory with
the complex order parameter is analyzed perturbatively.

The key element of the theory is the fluctuation propa-
gator, which describes the response of the amplitude and
phase modes of the order parameter. In the presence
of a superflow, these modes get coupled already at the
Gaussian level. As a consequence of such a hybridization,
even the amplitude mode becomes long-range, inheriting
a power-law decay of the Goldstone phase mode. As a
result, all correlation functions demonstrate a power-law
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rather than exponential attenuation at large distances.
In the most relevant case of short-range inhomogene-

ities (rc ≪ ξ), the theory contains a loop diagram diver-
gent in the ultraviolet. We argue that this divergency
should be absorbed into the redefinition of the critical
temperature, similar to the shift of Tc due to thermal
fluctuations. After proper regularization, one arrives at
a theory well defined at small scales, which depends only
on the zero Fourier component γinh = fτ (q=0) of the
τ1 correlation function. Within this theory we calculate
the dependence of the correction to the average supercur-
rent ⟨j⟩ and its correlation function ⟨jijj⟩ on the average
superfluid velocity v = ξ⟨ṽs⟩, the quantity that can be
accessed experimentally by applying a phase difference
across the sample. At a qualitative level, the obtained
expressions demonstrate suppression of the average su-
perfluid current by inhomogeneity and growth of spatial
fluctuations of |∆(r)| and j(r) with increasing the phase
gradient imposed.

The perturbation theory developed is applicable at
τ ≫ τ∗, where τ is the dimensionless distance from Tc,
and τ∗ is the effective inhomogeneity strength given by
Eq. (18). Another limitation is imposed by the value of
the supercurrent, which should not be very close to the
critical current, vc − v ≫ δvd, where the width of the
fluctuation region is given by Eq. (68). Finally, ther-
mal fluctuations will not smear frozen-in-space patterns
of |∆(r)| and j(r) provided τ ≫ Gi.

A natural development of our theory would be to gen-
eralize it to the case of arbitrary temperatures. Then
instead of using the GL expansion, one has to consider
the Usadel equation for the quasiparticle Green function
and the self-consistency equation for the order parameter.
Finally, a challenging and experimentally relevant in an
SNSPD context problem is to understand the formation
of thermal phase slips in inhomogeneous superconductors
that will be considered elsewhere.
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Appendix A: Amplitude response in 2D

Here we derive the intermediate asymptotics (40) of
the amplitude propagator L(r) in the 2D geometry at

v → vc. The starting point is Eq. (32) for L(q), where it
is convenient to integrate first over q′y. As a function of
q′y, L(q) has four poles located at ik± and −ik±, where

k± =
√

1− v2 + q′2x ± ρ and ρ =
√
(1− v2)2 + 4v2q′2x .

Integrating over q′y, we get an expression valid for all v:

L2D(r) =
1

8πτξ2

∫ ∞

−∞
dq′x(I+ + I−)e

iq′xx/ξ, (A1)

where

I± = ±1− v2 ± ρ

ρk±
e−k±|y|/ξ. (A2)

The analytic structure of I+ and I− is different. At
v → vc (more precisely, at v > 1/

√
5), both terms have

branch cuts (−i∞,−iκ2) and (iκ2, i∞), while the term
I− has also a branch cut (−iκ1, iκ1), which crosses the
real axes. The position of the branching points is deter-
mined by κ1 =

√
2(1− 3v2) and κ2 = (1− v2)/2v, with

κ1 < κ2 and κ1 vanishing at vc. Note also that k− van-
ishes at q′x = 0, while k+ remains finite. By deforming
the integration contour we conclude that the asymptotic
behavior of L2D(r) at r ≫ ξ is determined by I−, where
it suffices to keep only the contribution of the contour C
encompassing the cut (0, iκ1):

L2D(r) ≈ − 1

8πτξ2

∮
C

dq′x
1− v2 − ρ

ρk−
eiq

′
xx/ξ−k−|y|/ξ.

(A3)
In the leading order in vc − v and q′x, we have ρ = 2/3,

κ2
1 = 4

√
3(vc − v),

1− v2 − ρ = −q′2x , (A4)

k2− = (3/4)q′2x (κ2
1 + q′2x ). (A5)

Now introducing q′x = iκ1t ± 0, we write the contour
integral (A3) as (here we assume x, y > 0)

L2D(r) = −
√
3κ1

4πτξ2
Re

∫ 1

0

dt t e−κ1t(x+i
√
3κ1

√
1−t2y/2)/ξ

√
1− t2

.

(A6)
At largest r, the main contribution comes from t ≪ 1,
and we reproduce the power-law far asymptotics Lfar(r)
given by Eq. (33). As r is decreased, the relevant values
of t increase and become t ∼ 1 when r reaches rc(θ)
[Eq. (39)], which is still much larger than ξ. At r ≲ rc(θ),
the exponent in Eq. (A6) can be discarded, and we arrive
at the r-independent intermediate asymptotics (40).
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