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We study stochastic dynamics of an inverted pendulum subject to a random force in the horizontal
direction (Whitney’s problem). Considered on the entire time axis, the problem admits a unique
solution that always remains in the upper half plane. We formulate the problem of statistical
description of this never-falling trajectory and solve it by a field-theoretical technique assuming a
white-noise driving. In our approach based on the supersymmetric formalism of Parisi and Sourlas,
statistic properties of the never-falling trajectory are expressed in terms of the zero mode of the
corresponding transfer-matrix Hamiltonian. The emerging mathematical structure is similar to that
of the Fokker-Planck equation, which however is written for the “square root” of the probability
distribution function. Our results for the statistics of the non-falling trajectory are in perfect
agreement with direct numerical simulations of the stochastic pendulum equation. In the limit of
strong driving (no gravitation), we obtain an exact analytical solution for the instantaneous joint
probability distribution function of the pendulum’s angle and its velocity.

A dynamic system driven by a time-dependent pertur-
bation generically demonstrates diffusion in the energy
space. A paradigmatic example showing that sort of be-
havior is the kicked classical rotator, a particle on a ring
subject to position-dependent periodic kicks [1]. When
the kicks’ strength exceeds a certain threshold value, ro-
tator’s time evolution described by the standard map
[2] becomes chaotic, and since the spectrum is bounded
from below, energy-space diffusion translates to the lin-
ear growth of the average kinetic energy with time. Such
a behavior is not specific to classical physics with one de-
gree of freedom. The same phenomenon also takes place,
for example, for quantum systems of many fermions. Pro-
vided such a system can be described by the random ma-
trix theory [3] (e.g., in a quantum dot geometry [4]), one
finds that under the action of a time-dependent pertur-
bation the fermionic distribution function in the energy
space evolves according to the diffusion equation [5, 6].
Due to the Fermi statistics, this leads to the growth of
the system energy, eventually leading to dissipation.

Diffusion in the energy space and associated growth of
the system energy can be suppressed by a peculiar quan-
tum effect known as dynamic localization, when destruc-
tive interference between different paths blocks further
energy increase. Dynamic localization takes place both
for a quantum kicked rotator [7–9] and a many-electron
quantum dot under periodic driving [10].

A very different mechanism of blocking energy diffu-
sion in a pumped mechanical system takes place if there
exists a very specific trajectory, which remains localized
in a bounded region of phase space during the entire mo-
tion. A famous example is a driven inverted pendulum
(see inset to Fig. 1) described by the equation

θ̈ = ω2 sin θ + f(t) cos θ, (1)

where θ(t) is the angle of the pendulum counted from the
upward position, and f(t) is a random force acting in the
horizontal direction. A typical trajectory starting in an

upper half-plane will deviate exponentially from the up-
right position and go to the lower half-plane to minimize
the potential energy. Later on it will exhibit chaotic mo-
tion with many rotations around the pivot point, gradu-
ally increasing its average total energy.

Remarkably, for each driving force f(t) there exist a
special non-falling trajectory (non-FT), which always re-
mains in the upper half plane, −π/2 < θ(t) < π/2. In
mathematics, existence of a non-FT for Eq. (1) was first
addressed by Courant and Robbins (CR) in the book
“What is mathematics?” published in 1941 [11], where
the problem was attributed to Whitney. Their proof of
the existence was based on the intermediate value theo-
rem and essentially relied on the assumptions of a contin-
uous dependence of the final pendulum position on initial
conditions. Lack of rigor in the original arguments of CR
stimulated a long-lasting discussion in mathematical lit-
erature (for a review, see Refs. [12] and [13]), and the very
existence of the non-FT was questioned [14]. An impor-
tant refinement of the CR proof was made by Broman
[15], who utilized the fact that the sets of initial condi-
tions leading to touching the left (θ = −π/2) or right
(θ = π/2) boundary are open. Nevertheless, in 2002,
Arnold considered this problem still open [16].

Arnold’s comment triggered a new wave of interest in
Whitney’s problem. In 2014, Polekhin gave a proof [17]
based on the topological Wazewski principle. Polekhin’s
work was followed by a number of publications, where his
approach was generalized and new topological methods
to prove existence of the non-FT were applied [12, 18, 19].

To illustrate the concept of the non-FT, in Fig. 1
we plot nine non-falling solutions of the boundary-value
problem for the pendulum equation (1) with θ(0) =
−π/2, 0, π/2 and θ(T ) = −π/2, 0, π/2 calculated for
the same given realization of the driving force f(t) on
the interval (0, T ). Each trajectory is obtained by ad-

justing the initial velocity θ̇(0) to keep the trajectory in
the strip |θ(t)| < π/2. In accordance with CR, a non-
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FIG. 1: Examples of non-falling solutions to Eq. (1) bounded
to the strip |θ(t)| < π/2 for a particular realization of the drive
f(t) at the interval (0, T ) with ωT = 5. For any choice of θ1
and θ2 within the strip, there exists a unique trajectory sat-
isfying the boundary conditions θ(0) = θ1 and θ(T ) = θ2. In
the limit T → ∞, the bundle of these trajectories (shown by
filling) becomes infinitely thin, thus defining a unique never-
falling trajectory, whose statistical properties are studied in
our paper. Inset: sketch of a driven inverted pendulum.

falling solution of the boundary-value problem exists for
any initial and final value within the strip.

A crucial observation that we make is that the non-FT
solving the boundary-value problem for Eq. (1) is unique.
To the best of our knowledge, the uniqueness of non-FT
has not been discussed in the mathematical literature.
On the one hand, this fact can be easily verified by di-
rect numerical simulations. On the other hand, it can
be proved with the help of the lemma claiming that if
two non-FT θ1(t) and θ2(t) are such that θ1(τ) < θ2(τ)

and θ̇1(τ) < θ̇2(τ) then θ1(t) < θ2(t) for all t > τ . A
detailed proof of the uniqueness of the non-FT will be
given elsewhere.

The shaded region in Fig. 1 shows a bundle of non-
falling solution for the boundary-value problem with all
possible start and end points. For a sufficiently long time
interval (ωT � 1), these trajectories diverge significantly
only near the end points, whereas at intermediate values
of t they closely follow each other. The larger is T , the
smaller is the width of the bundle. Finally, if we extend
the time interval at which we study non-falling solutions
to the whole real axis, the bundle of non-falling trajec-
tories will become infinitely thin, thus defining a unique
never-falling trajectory. The never-falling trajectory is
an attractor of all non-falling trajectories defined on a fi-
nite time interval. This attractor is absolutely unstable:
any deviation from it will exponentially quickly take the
trajectory out of the strip −π/2 < θ < π/2.

A never-falling trajectory (hereafter denoted by NFT)
is a complicated functional of the driving force f(t). Ob-
taining it for a given f(t) is equivalent to solving an in-
verse control problem in control theory [20]. However
when the pendulum is driven by an irregular force (noise),
instead of restoration of the particular form of the NFT,

it is more natural to address its statistical properties.
In this Letter, we analyze the statistics of the never

falling trajectory in the limiting case of a random driving
described by the white-noise correlation function

〈f(t)f(t′)〉 = 2αδ(t− t′). (2)

The model (2) applies when the correlation time of f(t)
is much shorter than the pendulum’s oscillation period,
2π/ω. Then NFT statistics depend on the single dimen-
sionless parameter α/ω3.

As a warm-up, consider the simplest case of weak driv-
ing, α � ω3, when the angle at the NFT remains small
and Eq. (1) can be linearized. Then we obtain a linear

problem with an additive noise, θ̈ = ω2θ + f(t), which
can be immediately solved with the Green’s function
method. The requirement that the trajectory stay near
the origin dictates the choice of the Feynman Green’s
function GF(t) = − exp(−ω|t|)/2ω, which decays both
in the future and in the past. The choice of the Feyn-
man Green’s function—neither retarded nor advanced—
reflects the peculiarity of the problem, which is not of
evolutionary type. In this way one obtains an explicit ex-
pression for the NFT as a functional of the driving force:
θ(t) =

∫
GF(t− t′)f(t′) dt′. We see that indeed the NFT

is uniquely defined for a given driving f(t). Finally, av-
eraging over the white noise (2), we get a Gaussian prob-
ability distribution function (PDF) of the instantaneous
coordinate θ and momentum p = dθ/dt:

P (θ, p) =
ω2

πα
exp

(
−ω

3

α
θ2 − ω

α
p2
)
. (3)

An approximate expression (3) is valid at α/ω3 � 1,
when the angle θ(t) is typically small and the NFT does
not reach the boundaries θ = ±π/2. At larger driving
the nonlinearity of the equation of motion (1) becomes
important, and the explicit construction of the NFT for
a given f(t) seems impossible. Therefore in order to ad-
dress the statistics of the NFT at arbitrary α/ω3 one
has to use a different technique that does not rely on
exact solution of Eq. (1) but is able to perform disorder
averaging at the initial stage of the consideration. One
might think that the suitable approach would be that of
the Fokker-Planck (FP) equation for the probability den-
sity P (θ, p) [21]. However it cannot be used to describe
the NFT for the following reasons. First, the FP equa-
tion describes the ensemble of trajectories, whereas the
NFT is a unique trajectory (“of measure zero”). Second,
the FP equation belongs to the evolutionary type, while
the NFT keeps information on the future behavior of the
drive f(t).

To attack the problem of the NFT statistics, we sug-
gest to use the sypersymmetric formalism developed by
Parisi and Sourlas [22, 23], which was inspired by the
field-theoretical approach to stochastic classical dynam-
ics developed in 1970s [24, 25]. The idea of this formalism
is to represent summation over solutions of some classical
equation of motion, L(x) = 0, for a dynamical variable
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x by the functional integral over all x weighted with the
delta-function δ[L(x)]. Then this delta-function is repre-
sented as an integral with an exponent over an auxiliary
field λ, while the emerging determinant due to change of
variables is written as a functional integral over a pair of
Grassmann fields χ, χ. As a result, the theory is formu-
lated in terms of a supersymmetric action S[x, λ, χ, χ],
which can be easily averaged over disorder. Though spe-
cific to stochastic dynamics, the approach of Parisi and
Sourlas follows the general philosophy of theoretical de-
scription of disordered systems, where the key point is to
invent a functional representation (replica [26, 27], super-
symmetric [4] or Keldysh [28, 29]) suitable for disorder
averaging.

In order to implement the outlined procedure for the
pendulum equation of motion (1), we write the partition
function as a functional integral over all trajectories θ(t):

Z =

∫
Dθ(t) δ[−∂2t θ + F (θ)]

∣∣det[−∂2t + F ′(θ)]
∣∣, (4)

where F (θ) = ω2 sin θ+f(t) cos θ. Following the standard
steps [23, 30], we introduce a bosonic field λ(t) to put
the argument of the delta function to the exponent, and
a pair of Grassmann fields χ(t) and χ(t) to represent the
determinant. This leads to

Z =

∫
Dθ(t)Dλ(t)Dχ(t)Dχ(t) eS , (5)

with the action S[θ, λ, χ, χ] given by

S =

∫
dt
{
iλ[−∂2t θ + F (θ)] + χ[−∂2t + F ′(θ)]χ

}
. (6)

Averaging over the driving force distribution (2) gener-
ates an effective action, which can still be written as an
integral of a local-in-time Lagrangian due to the white-
noise nature of driving [31].

The key trick to rewriting Eq. (4) in the form of Eq.
(5) is to replace the absolute value of the determinant
by the determinant itself. This implicitly relies on the
assumption that the latter is positive for all solutions of
the equation of motion [23, 30]. For a generic stochastic
equation this is not true, and therefore the Parisi-Sourlas
approach cannot be applied as it weights various solu-
tions with arbitrary signs. To work with the absolute
value of the determinant one has to resort to much more
sophisticated techniques [32, 33].

However the problem of the determinant sign does not
appear if the solution to the stochastic dynamic equation
is unique. This is exactly the case of the NFT for a driven
inverted pendulum we are interested in. Hence, it is the
uniqueness of the NFT that justifies the use of the Parisi-
Sourlas method for the description of its statistics.

The one-dimensional field theory (5) can be equiva-
lently formulated in the quantum-mechanical language
[34], with the transfer-matrix Hamiltonian H acting on
the wave function Ψ(θ, λ, χ, χ). Then evaluation of the

functional integral is reduced to solving an imaginary-
time Schrödinger equation ∂Ψ/∂t = −HΨ. The most
important circumstance making the statistical descrip-
tion of the NFT possible is its exponentially weak sen-
sitivity to boundary conditions (see Fig. 1). As in the
theory of Anderson localization [4], this means that the
NFT corresponds to the zero mode of the supersym-
metric transfer-matrix Hamiltonian: HΨ = 0. Sin-
gling out the Grassmann content of the wave function,
Ψ(θ, λ, χ, χ) = Ψ(θ, λ) + Φ(θ, λ)χχ, we can represent the
Hamiltonian as a 2×2 differential operator acting on the
vector (Ψ,Φ) [31]. As a consequence of the Becchi-Rouet-
Stora-Tuytin (BRST) symmetry of the theory [30], there
exists a relation between Ψ and Φ, which makes it pos-
sible to write an equation for a single function. In the
present case, this reduction has the form Φ = −i∂θΨ/λ,
leading to the following equation:(

λ∂λ∂θλ
−1 + ω2λ sin θ + iαλ2 cos2 θ

)
Ψ(θ, λ) = 0. (7)

The structure of the differential operator suggests switch-
ing to a new function ψ(θ, λ) = iΨ(θ, λ)/λ, which will be
the main object of our theory. We also make Fourier
transform from the variable λ to its conjugate momen-
tum p: ψ(θ, λ) =

∫
ψ(θ, p)eipλdp. In terms of the func-

tion ψ(θ, p), Eq. (7) takes the form(
p∂θ + ω2 sin θ ∂p − α cos2 θ ∂2p

)
ψ(θ, p) = 0. (8)

Remarkably, Eq. (8) mathematically coincides with the
FP equation for stochastic dynamics (1) (in its linearized
form also known as Kramers equation [21, 35]). An essen-
tial difference however is that the time-independent FP
equation describes the steady PDF P (θ, p) of all trajecto-
ries, whereas Eq. (8) is written for an auxiliary function
ψ(θ, p), which encodes statistics of the unique NFT. In
order to express its instantaneous PDF P (θ, p) in terms
of ψ(θ, p), one has to evaluate the integral (4) with the
prefactors δ[θ − θ(t)]δ[p − dθ(t)/dt]. After some algebra
with Grassmann numbers one finds [31]:

P (θ, p) =
{
ψ(θ, p), ψ(θ,−p)

}
θ,p
, (9)

where {f, g}θ,p = (∂θf)(∂pg)− (∂pf)(∂θg) is the Poisson
bracket. The bilinear dependence of the PDF on ψ re-
flects the fact that the NFT contains knowledge of both
the past (p > 0) and the future (p < 0) [cf. calculation
with the Feymann Green’s function that lead to Eq. (3)].
A similar bilinear dependence of the single-point wave
function correlations on the zero mode of the transfer-
matrix Hamiltonian is well known in the theory of quasi-
one-dimensional Anderson localization [34, 36, 37]

The crucial element of our theory is boundary condi-
tions for Eq. (8) that ensure that the trajectory never
leaves the region |θ(t)| < π/2. It means that the NFT
should approach the boundaries θ = ±π/2 with zero ve-
locity: P (π/2, p) = P (−π/2, p) = 0. In accordance with
Eq. (9), it suggests that ψ should be constant at the
boundary. However since the PDF is bilinear in ψ, it is
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FIG. 2: Boundary conditions (10) to Eq. (8) for the function
ψ(θ, p). It should be obtained inside the shaded region and
on two dashed segments of the boundary.

possible to relax this requirement and impose boundary
conditions only at the half of the lines θ = ±π/2:

ψ(π/2, p < 0) = ψ(θ,−∞) = −1/2, (10a)

ψ(−π/2, p > 0) = ψ(θ,∞) = 1/2. (10b)

These boundary conditions are shown in Fig. 2. Since
the PDF (9) is expressed in terms of the derivatives of
ψ, its precise value at the boundary is a matter of con-
vention. However unit normalization of P (θ, p) imposes
a constraint ψ(θ,∞) − ψ(θ,−∞) = 1 [31]. Resolving it
in a symmetric way, we arrive at Eqs. (10).

We emphasize that Eqs. (10) do not belong to any
known types of boundary conditions to the FP equation
discussed in literature (absorbing wall [38], ideally reflect-
ing wall [21], inelastically reflecting wall [39]). All those
boundary conditions refer to the standard FP situation
when one is interested in forward evolution of an ensem-
ble of trajectories. In contrast, boundary conditions (10)
to the FP-like equation (8) describe the behavior of a
unique NFT. To some extent, our boundary conditions
resemble those for an absorbing wall [38]: both of them
do not specify the distribution for outgoing momenta
and fix the distribution for incoming momenta. However
while an absorbing wall does not transmit particles back,
the boundary in Eqs. (10) acts as a source of incoming
particles with momentum-independent flux, which has
different signs at the opposite parts of the boundary.

The FP equation (8) supplemented by the boundary
conditions (10) still constitutes a nontrivial problem due
to its non-locality: The function ψ at the part of the
boundary, ψ(π/2, p > 0) and ψ(−π/2, p < 0), should
be found simultaneously with the solution of the inner
problem. Below we demonstrate that the system of Eqs.
(8) and (10) indeed provides a full statistical descrip-
tion of the NFT. In the limiting cases the solution will
be obtained analytically, whereas at arbitrary α/ω3 one
should resort to numerical simulations. The results for
the function ψ(θ, p) are shown in Fig. 3 in the limit of
weak (α/ω3 � 1) and strong (α/ω3 � 1) driving.

In the trivial case of a vanishing driving, α = 0, the
solution takes the form ψ(θ, p) = sign(p − 2ω sin θ/2)/2.
Then two derivatives in the Poisson bracket generate two

FIG. 3: Density plots of ψ(θ, p) for α/ω3 = 0.1 (weak driving)
and 40 (strong driving) obtained by numerical solution of Eq.
(8) with the boundary conditions (10).

delta functions in the PDF: P (θ, p) = δ(θ)δ(p), as ex-
pected since the NFT in this case is just the unstable
upper position of the pendulum.
In the weak driving limit, α � ω3, the sharp step at

the line p = 2ω sin θ/2 gets smeared, as can be seen in
Fig. 3(a). To find the PDF, which is localized at small
angles, the operator in Eq. (8) can be replaced by its lin-
earized version: p∂θ + ω2θ∂p − α∂2p . The solution then

reads ψ(θ, p) = erf[κ(p − ωθ)]/2, where κ = (ω/2α)1/2.
Substituting it into Eq. (9), we recover the weak-noise re-
sult (3). Thus we have demonstrated that our approach
based on Eq. (8) with the boundary conditions (10) read-
ily reproduces the NFT statistics in the weak-noise limit.

The other special case when statistics of the NFT can
be determined analytically is the limit of a vanishing ver-
tical force, ω = 0 (infinitely strong driving). Then one of
the three terms in the FP operator in Eq. (8) disappears
and the latter can be brought to the canonic form with
separated variables:

∂τψ = q−1∂2qψ, (11)

where τ and q are new coordinate and momentum de-
fined as τ = (2θ + sin 2θ)/π and q = (4/πα)1/3p. The
boundaries θ = ±π/2 map to τ = ±1. The solution
of Eq. (11) that satisfies the boundary conditions (10)
can be obtained with the help of the multiplicative Airy
transform [40] and is given by [31]

ψ(τ, q) =
3 Ai′(0)

Ai(0)

∫ ∞
−∞

dµ

µ
Ai
[
(3/2)

2/3
µ2
]

Ai(µq)eµ
3τ .

(12)
The momentum derivative needed to calculate the PDF
is computed as explained in [31]:

∂qψ = −31/6 Ai′(0)

Ai(0)

Ai(s2) exp
(
2
3τs

3
)

(1− τ2)
1/6

, (13)

where s = q/[6(1− τ2)]1/3. The other derivative ∂τψ can
be easily obtained from Eq. (11). Owing to the Poisson-
bracket structure of Eq. (9), the normalized PDF in the
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FIG. 4: Joint angle and momentum probability distribution
function of the NFT, P (θ, p) in the limit ω = 0, as follows
from Eq. (14).

variables τ and q is given by an analogous expression:
P (τ, q) =

{
ψ(τ, q), ψ(τ,−q)

}
τ,q

, and we arrive at

P (τ, q) = −24/3

31/3

(
Ai′(0)

Ai(0)

)2
Ai(s2) Ai′(s2)

1− τ2
. (14)

The joint angle and momentum PDF in terms of the orig-
inal variables given by P (θ, p) = (∂τ/∂θ)(∂q/∂p)P (τ, q)
is shown in Fig. 4. When θ approaches the edges at±π/2,
the PDF shrinks in the p direction, such that the pen-
dulum touches the horizontal position with zero velocity:
P (±π/2, p) = 0.338 δ(p).

Integrating over q, we obtain the PDF of the coordi-
nate τ :

P (τ) =
Γ(5/6)

Γ(1/3)Γ(1/2)

1

(1− τ2)2/3
, (15)

where Γ is the gamma function. The singularities of P (τ)
near the edges (τ → ±1) disappear in the PDF P (θ) =
(∂τ/∂θ)P (τ) of the original angle θ:

P (θ) =
4

π1/6

Γ(5/6)

Γ(1/3)

cos2 θ

[π2 − (2θ + sin 2θ)2]2/3
, (16)

which is shown by the solid red line in Fig. 5(d). Surpris-
ingly, P (θ) is nearly angle-independent, with a minimum
0.303 at the upright position and a maximum 0.338 at
the horizontal position of the pendulum (θ = ±π/2).

At arbitrary values of α/ω3, Eq. (8) with the bound-
ary conditions (10) should be solved numerically. The
standard finite element method naturally generalized to
include the parts of the boundary with unknown ψ(θ, p)
appears to be stable. Two examples of ψ(θ, p) obtained
numerically at representative values of α/ω3 are shown
in Fig. 3. The resulting PDF of the NFT angle, P (θ),
obtained by integrating P (θ, p) given by Eq. (9) over p
are shown by blue solid lines in Fig. 5.

FIG. 5: Probability distribution function of the NFT angle,
P (θ), for several values of α/ω3: (a) 0.1, (b) 3, (c) 40, (d)
∞. Green histograms are obtained by direct Monte-Carlo
simulation of Eq. (1). The dashed red line in panel (a) is the
approximate solution (3). Numerical solutions of Eqs. (8) and
(10) are shown by blue lines. The solid red line in panel (d)
is the analytical solution (16) for ω = 0.

Figure 5 also demonstrates the results of direct numer-
ical simulation of the NFT from the pendulum equation
(1) with randomly generated realizations of f(t). The
corresponding PDF histograms are displayed in green.
Perfect agreement between P (θ) obtained from Eqs. (8)–
(10) and by direct numerical simulation of Eq. (1) lends
strong support for the validity of our theoretical descrip-
tion of the NFT statistics, where disorder averaging is
performed at the initial stage of the derivation.

With the increase of the driving strength α, the narrow
Gaussian distribution (3) shown by the red dashed line in
Fig. 5(a) becomes wider, and at α/ω3 ∼ 1 extends almost
to the entire interval (−π/2, π/2). Further increase of α
leads to the shrinking of poorly accessible regions near
|θ| = π/2 and formation of a minimum at θ = 0 (upright
position) at α/ω3 & 7. In the limit α/ω3 →∞, the PDF
is nearly flat, with 10 % depletion at θ = 0.
Universality of the far-momentum tail of the PDF.

Now let us discuss the momentum dependence of the dis-
tribution function P (θ, p) at large p. Its Gaussian shape
at small α [Eq. (3)] crosses over to the Airy-type behavior
(14) in the limit of large α, with the large-p asymptotics

Pasymp(p) ∝ exp
[
−8|p|3/9πα(1− τ2)

]
. (17)

Such a form of the far tail is typical for non-linear
stochastic problems (e.g., large positive velocity gradi-
ent in random-forced Burgers equation [41–43], statis-
tics of extrema in a random potential [44]) and, as we
demonstrate below, is also realized for the driven in-
verted pendulum at arbitrary α. Indeed, searching for
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the solution of Eq. (8) in the stretch-exponent form,
ψ ∝ exp

(
−g(θ)|p|β

)
, we see that the term proportional

to ω2 can be neglected at large |p|. Hence β = 3, and
using Eq. (9) we arrive at Eq. (17). The asymptotic ex-
pression (17) is applicable for |p| > ω cos1/2 θ, provided
that the number in the exponent is large. The stretched-
exponential tail of the PDF (17) can be physically under-
stood in terms of an optimal fluctuation of the driving
force. To accelerate the pendulum to a large momentum
p during the time ∆t, one should exert a force f ∼ p/∆t.
The probability P for such a fluctuation can be estimated
as − lnP ∼ f2∆t/α ∼ p2/α∆t. Since the duration of the
pulse is limited by the requirement |θ| < π/2, we have
∆t . 1/p and hence − lnP ∼ p3/α, in accordance with
Eq. (17).

NFT as the global action minimizer. Finally, we sug-
gest looking at the NFT from a different perspective.
Consider a boundary value problem for Eq. (1) at a fi-
nal time interval with θ(0) = θ1 and θ(T ) = θ2, where
both the initial and final points are located within the
strip |θ1,2| < π/2. Numerical simulations demonstrate
that the solution to this boundary value problem is not
unique if we relax the condition that the trajectory stay
within the strip, |θ(t)| < π/2. In addition to the NFT
that exists for all T (see Fig. 1), other solutions that leave
the strip and then come back appear for longer intervals,
T & 1/ω. Now we ascribe to each solution θ(t) the value
of the corresponding action defined as

A[θ(t)] =

∫ t2

t1

[
θ̇2/2− ω2 cos θ + f(t) sin θ

]
dt. (18)

Numerical analysis shows that the NFT provides a global
minimum for A[θ(t)] among all solutions of the bound-
ary value problem and therefore is a minimizer [42]. This
fact provides a connection between the NFT and Burg-
ers equation (whose characteristics are described by the
driven pendulum equation) and, more broadly, to the
field of one-dimensional turbulence [41, 45, 46].

To summarize, we introduce a concept of a unique
never-falling trajectory for a horizontally driven inverted

pendulum and formulate the problem of its statistical
description. In the case of white-noise random driving,
we provide a full solution for this problem. Using field-
theoretical methods of statistical and condensed-matter
physics, we express the instantaneous joint PDF of the
pendulum’s angle and its velocity in terms of an auxil-
iary function satisfying the Fokker-Planck equation with
a new type of boundary conditions. In the limit of very
strong driving (vanishing gravitation), the PDF is ob-
tained analytically. For arbitrary driving strength, the
derived equations can be easily solved numerically, which
is much simpler and efficient than direct numerical sim-
ulation of a never-falling trajectory from the equation
of motion with statistics accumulation. We demonstrate
that both approaches give the same result.

In a wider context, the problem of a never-falling tra-
jectory has many notable connections with other mathe-
matical physics problems: theory of minimizers (NFT is
a global minimizer of the classical action), Burgers turbu-
lence, rear events in stochastic differential equations, etc.
We expect our approach to be also in demand in control
theory. Our results can be naturally generalized to other
Langevin-type equations, which admit non-falling trajec-
tories. Finally we’d like to emphasize that studying the
properties of a never-falling trajectory, which has mea-
sure zero among all solutions of a driven mathematical
pendulum, is not just an academic exercise. For example,
the Usadel equation [47] describing inhomogeneous states
in dirty superconductors belongs to a class of pendulum
equation, but with an essentially complex ω, when bal-
ancing an unstable trajectory is a generic situation. The
theoretical approach developed in the present publica-
tion can then be used to obtain the density of states in
inhomogeneous superconducting wires [48].
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In these notes we (i) derive the main equations of our theory, (ii) formulate proper boundary
conditions for the function ψ, and (iii) provide the exact solution in the limiting case of a vanishing
gravitation (ω = 0). The last section contains relevant identities and integrals with the Airy
functions.

I. PARISI-SOURLAS FORMALISM

A. Supersymmetric functional representation and averaging over driving

Consider a differential equation

∂2t θ(t) = F (θ(t)), (S1)

where F (θ) might be a nonlinear function with an arbitrary time dependence. For the driven pendulum,

F (θ) = ω2 sin θ + f(t) cos θ. (S2)

Let A[θ] be a functional of a trajectory θ(t). Then the sum of A[θ] over all solutions of the differential equation (S1)
can be written as a path integral over all functions θ(t) [S1–S3]:∑

solutions

A[θ] =

∫
Dθ(t)A[θ(t)] δ[−∂2t θ + F (θ)]

∣∣det[−∂2t + F ′(θ)]
∣∣, (S3)

where the delta function ensures that θ(t) indeed satisfies the equation, whereas the absolute value of the determinant
arises since the argument of the delta function contains the equation rather its solution.

In a generic situation, when Eq. (S1) possesses many solutions, the sign of the determinant in Eq. (S3) alternates
between solutions. However, uniqueness of a non-falling trajectory for Whitney’s problem guarantees that the deter-
minant is positive, so that the functional A on it can be written with the absolute value of the determinant replaced
by the determinant itself:

A[θNFT] =

∫
Dθ(t)A[θ(t)] δ[−∂2t θ + F (θ)] det[−∂2t + F ′(θ)]. (S4)

Following then the approach of Parisi and Sourlas [S1–S3], we rewrite the delta function using an extra field λ(t) and
the determinant using a pair of Grassmann fields χ(t) and χ(t):

A[θNFT] =

∫
Dθ(t)Dλ(t)Dχ(t)Dχ(t)A[θ(t)] eS , (S5)

with the action

S =

∫
Ldt, L = iλ[−∂2t θ + F (θ)] + χ[−∂2t + F ′(θ)]χ. (S6)

Now we average over realizations of a random force f(t), assuming Gaussian white-noise statistics with the corre-
lation functions 〈f(t)f(t′)〉 = 2αδ(t− t′), and integrating by parts in the kinetic term, we obtain

〈A[θNFT]〉 =

∫
Dθ(t)Dλ(t)Dχ(t)Dχ(t)A[θ(t)] exp

[∫
dt (i ∂tλ∂tθ + ∂tχ∂tχ+ V)

]
, (S7)

where the superpotential V is given by

V = ω2 (iλ sin θ + χχ cos θ) + α (iλ cos θ − χχ sin θ)
2
. (S8)
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B. Hamiltonian representation

The one-dimensional field theory (S7) can be interpreted as Feynman’s path-integral representation of a certain
quantum mechanics. An alternative but completely equivalent representation is known to be provided by the time-
dependent Schrödinger equation for the wave function Ψ̂ with an appropriate transfer-matrix Hamiltonian. This idea
of reducing functional integral evaluation to solving a corresponding Shcrödinger equation has appeared to be very
fruitful in the theory of quasi-one-dimensional Anderson localization [S4, S5]. We exploit the same analogy. In the
case of the path integral (S7), its evaluation can be reduced to solving the Schrödinger equation

∂Ψ̂

∂t
= (i∂λ∂θ + ∂χ∂χ + V) Ψ̂ (S9)

for the wave function

Ψ̂(θ, λ, χ, χ) = Ψ(θ, λ) + Φ(θ, λ)χχ, (S10)

where the right-hand side of the last equation is an expansion in the basis of even elements of the Grassmann algebra.
In terms of functions Ψ(θ, λ) and Φ(θ, λ), the Schrödinger equation (S9) can be written as

∂

∂t

(
Ψ
Φ

)
=

(
i∂λ∂θ + V1 1
V2 i∂λ∂θ + V1

)(
Ψ
Φ

)
, (S11)

where V1,2 are the coefficients of the expansion of the superpotential (S8) over even Grassmann basis: V ≡ V1 +V2χχ.
As in the theory of Anderson localization [S4, S5], exponentially weak sensitivity of the NFT to boundary conditions

indicates that it corresponds to the zero mode of the transfer-matrix Hamiltonian:(
i∂λ∂θ + V1 1
V2 i∂λ∂θ + V1

)(
Ψ
Φ

)
= 0. (S12)

C. Reduction to the scalar equation and Fokker-Planck operator

By construction, the coefficients of the superpotential (S8) obey the relation

iλV2 = ∂θV1. (S13)

As a consequence, the functions Ψ and Φ become connected by the relation

iλΦ = ∂θΨ (S14)

and the system (S12) reduces to a single scalar equation for the function Ψ(θ, λ):(
iλ∂λ∂θλ

−1 + iω2λ sin θ − αλ2 cos2 θ
)

Ψ = 0. (S15)

It is convenient to introduce a new function

ψ(θ, λ) = iΨ(θ, λ)/λ (S16)

and switch to the momentum representation according to

ψ(θ, λ) =

∫
ψ(θ, p)eipλdp. (S17)

The function ψ(θ, p) will play a key role in our analysis. In terms of it, the zero-mode equation (S15) takes the
simplest possible form, coinciding with that of the Fokker-Planck equation:(

p∂θ + ω2 sin θ ∂p − α cos2 θ ∂2p
)
ψ(θ, p) = 0. (S18)

At the same time, the functions Ψ(θ, p) and Φ(θ, p) have an elegant representation in terms of the function ψ(θ, p):

Ψ = ∂pψ, Φ = −∂θψ. (S19)
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D. BRST symmetry

The relation (S14) between Ψ and Φ that allows to obtain a single equation for the function Ψ is a consequence
of the Becchi-Rouet-Stora-Tuytin (BRST) symmetry of the Parisi-Sourlas theory for stochastic differential equations
[S3]. The Lagrangian of the theory defined in Eq. (S6) appears to be invariant with respect to infinitesimal rotations

by a Grassmann field ε: δθ = εχ and δχ = −iελ. This means that the Lagrangian satisfies D̂L = 0 and can be written
as

L = D̂(χ[−∂2t θ + F (θ)]), (S20)

where D̂ a nilpotent (D̂2 = 0) BRST operator

D̂ = iλ∂χ − χ∂θ. (S21)

The BRST symmetry of the Lagrangian translates to the BRST symmetry of the wave functions in the Hamiltonian
representation: D̂Ψ̂ = 0. Hence there should exist such a function ψ that

Ψ̂ = D̂(χψ). (S22)

Comparing with Eqs. (S10) and (S14), we see that thus defined function ψ coincides (up to an overall sign) with the
same function introduced in Sec. I C.

E. Instantaneous joint PDF of the angle and its velocity

The instantaneous PDF of the angle and momentum of the NFT, P (θ, p), is defined by Eq. (S7) with a local-in-time

functional A[θ] = δ(θ(t) − θ)δ(θ̇(t) − p). It can be calculated by taking two infinitesimally close moments of time, t
and t + ε, replacing the functional integrals over the regions t′ < t and t′ > t + ε by the corresponding zero modes,
and discretizing the action at the interval (t, t+ ε):

P (θ, p) = lim
ε→0

∫
dλ1
2π

dλ2
2π

dθ1dθ2dχ1dχ1dχ2χ2 δ (θ1 − θ) δ
(
θ2 − θ1

ε
− p
)

×Ψ(λ1, θ1, χ1, χ1) exp

{
i
(λ2 − λ1)(θ2 − θ1)

ε
+

(χ2 − χ1)(χ2 − χ1)

ε

}
Ψ(λ2, θ2, χ2, χ2). (S23)

Substituting Ψ from Eq. (S10), performing all integrations and switching to the momentum representation (S17), we
get

P (θ, p) = Ψ(θ, p)Φ(θ,−p) + Ψ(θ,−p)Φ(θ, p). (S24)

In terms of the function ψ, the PDF of the NFT takes an amazingly compact form

P (θ, p) =
{
ψ(θ, p), ψ(θ,−p)

}
θ,p
, (S25)

where the Poisson bracket is defined as

{f, g}θ,p = (∂θf)(∂pg)− (∂pf)(∂θg). (S26)

II. BOUNDARY CONDITIONS

To complete the formulation of the theory for the NFT statistics, we have to impose the boundary conditions on
the function ψ(θ, p) at θ = ±π/2 that will ensure that the pendulum never leaves the upper-half plane. In terms
of the PDF, this means that P (±π/2, p) should vanish for all p 6= 0. The structure of Eq. (S25) suggests that it is
sufficient to nullify ψ(±π/2, p) not for all p, but only on a half-line. We find it convenient to resolve this constraint
by imposing the following boundary equations:

ψ(π/2, p < 0) = −1/2, (S27a)

ψ(−π/2, p > 0) = 1/2. (S27b)



4

As a consequence of the Fokker-Planck equation (S18), it follows that

ψ(θ,±∞) = ±1/2. (S28)

Let us demonstrate that the Fokker-Planck equation (S18) with the boundary conditions (S27) generates the PDF
P (θ, p), which is automatically normalized to unity. Using Eq. (S25) and integrating one of the two terms in the
Poisson bracket by parts over θ and over p, we obtain that the bulk contribution vanishes and only the boundary
contributes: ∫

P (θ, p) dθ dp =

∫ π/2

−π/2
dθ ψ(θ,−p) ∂θψ(θ, p)

∣∣∣p=∞
p=−∞

−
∫ ∞
−∞

dpψ(θ,−p)∂pψ(θ, p)
∣∣∣θ=π/2
θ=−π/2

. (S29)

The first term here vanishes due to Eq. (S28), whereas the second term reduces to the integral over two momentum
haft-lines due to the boundary conditions (S27):∫

P (θ, p) dθ dp = −
∫ ∞
0

dpψ(π/2,−p) ∂pψ(π/2, p) +

∫ 0

−∞
dpψ(−π/2,−p) ∂pψ(−π/2, p). (S30)

Here ψ(±π/2,−p) are constants given by ψ(θ,∓∞) = ±1/2, so it remains to integrate full derivatives. Using the
continuity of ψ(θ, p), we arrive at ∫

P (θ, p) dθ dp = [ψ(θ,∞)− ψ(θ,−∞)]2 = 1, (S31)

that proves proper normalization of the PDF.
Finally, we discuss the degrees of freedom in defining the boundary conditions (S27). The first one is related to the

fact that the function ψ(θ, p) enters physical observables only via its derivatives [see Eqs. (S19) and (S25)]. Therefore
it is defined up to an additive constant. Normalization of the PDF ensures that ψ(θ,∞) − ψ(θ,−∞) = 1. In our
boundary conditions (S27), we resolve this constraint in a symmetric way. The second uncertainty is related to the
choice of half-lines of momentum, where ψ(±π/2, p) should be constant. Besides the convention (S27), there is an
alternative way to fix the values of ψ(π/2, p > 0) and ψ(−π/2, p < 0) on the different half-lines of p that would
correspond to changing the sign of the momentum. However since the PDF is a bilinear function of ψ(θ, p) and
ψ(θ,−p), such a choice would lead to the same expression for the PDF.

III. EXACT SOLUTION IN THE ABSENCE OF GRAVITATION (ω = 0)

A. Expansion in the Airy functions

Remarkably, in the absence of a vertical force, the PDF of the NFT can be obtained exactly. In this limit, the
Fokker-Planck equation (S18) contains only two terms that allows to separate the variables. To this end we define a
new coordinate

τ =
4

π

∫ θ

0

cos2 θ′dθ′ =
2θ + sin 2θ

π
, (S32)

where the overall numerical coefficient is chosen such that the boundaries θ = ±π/2 are mapped to τ = ±1, and a
new momentum

q = (4/πα)1/3p. (S33)

In terms of ψ(τ, q), Eq. (S18) takes a simple form:

∂τψ = q−1∂2qψ. (S34)

The eigenfunctions of the operator at the right-hand side of Eq. (S34) are the Airy functions φµ(q) = Ai(µq) [S6]
labeled by a continuous index µ ∈ R, with the corresponding eigenvalues εµ = µ3. Therefore a general solution of Eq.
(S34) can be expressed as

ψ(τ, q) =

∫ ∞
−∞

dµ c(µ) Ai(µq) exp(µ3τ), (S35)

where c(µ) are the coefficients of the multiplicative Airy transform [S7] of the function ψ at the line τ = 0 (upper
pendulum position).
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B. Solution for c(µ)

The function ψ(τ, q) written in terms of the integral representation (S35) solves the Fokker-Planch equation (S34)
in the inner region, |τ | < 1 (i.e., |θ| < π/2). An unknown function c(µ) should be determined from the boundary
conditions (S27) at |θ| = π/2. Here we demonstrate that the proper c(µ) is given by

c(µ) =
3 Ai′(0)

Ai(0)

Ai
[
(3/2)

2/3
µ2
]

µ
. (S36)

The idea behind the ansatz (S36) is that the contribution of large µ tends to explode at large |τ | due to the exponential
factor in Eq. (S35) and unboundedness of the spectrum εµ = µ3. Therefore to make the integral (S35) convergent at
|τ | ≤ 1, the coefficients c(µ) should decay not slower than exp(−|µ|3). At large |µ|, the function (S36) indeed behaves
as c(µ) ∼ signµ exp(−|µ|3)/|µ|3/2 [see Eq. (S48)]. Right at the boundary, |τ | = 1, the leading growing and decreasing
exponents fully compensate each other.

To prove that ψ(τ, q) in the form (S35) with c(µ) given by Eq. (S36) satisfies the boundary conditions (S27), we
show below (i) that ψ(±1, q) has a constant value for q < 0 (q > 0) and (ii) that its asymptotics at q → ±∞ is given
by 1

2 sign q.
The first statement can be proved by calculating the momentum derivative of ψ with the help of Eq. (S51):

∂qψ(τ, q) = −31/6 Ai′(0)

Ai(0)

Ai(s2) exp
(
2
3τs

3
)

(1− τ2)
1/6

, (S37)

where we introduced a short-hand notation

s =
q

[6(1− τ2)]1/3
=

21/3p

[3πα(1− τ2)]1/3
. (S38)

Talking the limit |τ | → 1 using the asymptotic expansion (S48) and the identities (S47), we find

∂qψ(±1, q) =
32/3

21/6Γ(1/6)

exp
(
−|q|3/18

)
|q|1/2

θ(±q). (S39)

Thus we establish that ∂qψ(±1, q) vanishes for q < 0 (q > 0), in accordance with the boundary conditions (S27).
The second statement about normalization is proved by considering the asymptotic behavior of ψ(τ, q) at q → ±∞.

In this limit, the main contribution to the integral (S35) comes from small µ ∼ 1/q that allows to take all other
functions at µ = 0. Using Eq. (S49), we obtain:

lim
q→∞

ψ(τ, q) = 3 Ai′(0)

∫
dµ

Ai(µq)

µ
= 3 Ai′(0) sign q

∫
dµ

Ai(µ)

µ
=

sign q

2
, (S40)

as prescribed by the boundary conditions (S27). This completes the proof that Eqs. (S35) and Eq. (S36) provide an
exact analytic solution for the function ψ(τ, q) in the limit of vanishing ω.

C. Probability distribution function

The joint angle and momentum PDF P (θ, p) is given by Eq. (S25). Owing to the Poisson-bracket structure of this
equation, the normalized PDF in the variables τ and q [see Eq. (S32) and (S33)] is given by an analogous expression:

P (τ, q) =
{
ψ(τ, q), ψ(τ,−q)

}
τ,q
. (S41)

Taking the q-derivative from Eq. (S37) and calculating then the p-derivative from Eq. (S34), we arrive at the following
expression for P (τ, q):

P (τ, q) = −24/3

31/3

(
Ai′(0)

Ai(0)

)2
Ai(s2) Ai′(s2)

1− τ2
, (S42)

where s is defined in Eq. (S38). The PDF in terms of the original variables θ and p is given by

P (θ, p) =
∂τ

∂θ

∂q

∂p
P (τ, q) = − 16 cos2 θ

31/3π4/3α1/3

(
Ai′(0)

Ai(0)

)2
Ai
(
s2
)

Ai′
(
s2
)

1− τ2
. (S43)
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The PDF for the coordinate is obtained by integration over the corresponding momentum, which is done with the
help of Eq. (S50). As a result, the PDF of the variable τ takes a simple form:

P (τ) =
Γ(5/6)

Γ(1/2)Γ(1/3)

1

(1− τ2)2/3
. (S44)

In the original θ representation we obtain

P (θ) =
4

π1/6

Γ(5/6)

Γ(1/3)

cos2 θ

[π2 − (2θ + sin 2θ)2]2/3
, (S45)

IV. MATHEMATICAL SUPPLEMENTARY: INTEGRALS WITH THE AIRY FUNCTIONS

A. Basic identities and integrals for the Airy functions

Here we collect useful identities for the Airy function that are needed to describe the solution of the pendulum
problem in the limit ω = 0. Many facts about the Airy function can be found in a comprehensive monograph [S6].

Integral representation for the Airy function:

Ai(x) =

∫ ∞
−∞

dt

2π
exp

(
i
t3

3
+ ixt

)
. (S46)

Airy function and its derivative at the origin are given by:

Ai(0) =
1

32/3Γ (2/3)
, Ai′(0) = − 1

31/3Γ (1/3)
. (S47)

Asymptotic expansion at x� 1:

Ai(x) ≈ 1

2
√
π

exp
(
− 2

3x
3/2
)

x1/4
. (S48)

Useful integrals: ∫
dx

Ai(x)

x
=

∫ ∞
0

dx
Ai(x)−Ai(−x)

x
=

1

6 Ai′(0)
, (S49)∫ ∞

−∞
dxAi(x2) Ai′(x2) = −Ai(0)

24/3
. (S50)

Eq. (S49) can be obtained directly from the integral representation (S46), while Eq. (S50) can be derived with the
help of Eq. 2.16.33.1 of Ref. [S8].

B. The key integral with the Airy functions

Here we prove the identity

I(p, τ) =

∫ ∞
−∞

dxAi(x2) Ai′(px) exp

(
2

3
x3τ

)
= −

exp
(
p3

6
τ

(1−τ2)

)
21/331/2 (1− τ2)

1/6
Ai

(
p2

24/3 (1− τ2)
2/3

)
. (S51)

This is the key integral, which determines the PDF of the pendulum’s angle and momentum in the absence of
gravitation (ω = 0), see Sec. III. It is absent in the standard tables of integrals [S8, S9] and handbooks of special
functions [S6, S10].
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1. Canonization of the ternary cubic

Using the integral representation (S46) and switching to imaginary τ , we write I(iτ, p) as a triple integral:

I(iτ, p) =

∫
Ai(x2) Ai′(px) exp(2ix3τ/3)dx =

1

(2π)2

∫
dt ds dx is exp i

(
t3

3
+ x2t+

s3

3
+ xps+

2

3
x3τ

)
. (S52)

As an auxiliary step, we rescale the x variable:

I(iτ, p) =
1

(2τ)1/3
1

(2π)2

∫
dt ds dx is exp i

(
t3

3
+

x2t

(2τ)2/3
+
s3

3
+

xps

(2τ)1/3
+
x3

3

)
. (S53)

To bring the ternary cubic to a canonic form we make a linear transformation of the variables x and t:(
x
t

)
= M

(
u
v

)
, M =

1

(eθ + e−θ)2/3

(
eθ/3(eθ − e−θ)1/3 −e−θ/3(eθ − e−θ)1/3

e−2θ/3 e2θ/3

)
, (S54)

where the angle θ is defined such that τ = sinh θ. The Jacobian of the transformation is given by:

J = detM = (tanh θ)1/3 =
τ1/3

(1 + τ2)1/6
. (S55)

Hence we get

I(iτ, p) =
1

21/3(1 + τ2)1/6
1

(2π)2

∫
ds du dv is exp i

(
s3 + u3 + v3

3
+ P (eθ/3u− e−θ/3v)s

)
(S56)

where

P =
p

(eθ + e−θ)2/3
=

p

22/3(1 + τ2)1/3
. (S57)

Comparing with Eq. (S51), we see that it is equivalent to the following identity:

L(τ, P ) ≡ 1

(2π)2

∫
ds du dv is exp i

(
s3 + u3 + v3

3
+ P (eθ/3u− e−θ/3v)s

)
= − 1

31/2
exp

(
2P 3

3
iτ

)
Ai(P 2), (S58)

that will be proven below.

2. Auxiliary integral

Consider an integral

K(x, y) ≡ 1

(2π)2

∫
du ds dv is exp i

(
s3 + u3 + v3

3
+ (xu+ yv)s

)
. (S59)

Its Fourier transform with respect to x and y can be evaluated easily:

K(p, q) =

∫
dx dy e−ipx−iqyK(x, y) = −2π

3
J0

[
2

3
(p3 + q3)1/2

]
θ(p3 + q3). (S60)

Now we take the inverse Fourier transform:

K(x, y) = −2π

3

∫
dp dq

(2π)2
θ(p+ q)J0

[
2

3
(p3 + q3)1/2

]
eipx+iqy. (S61)

With p+ q = u, p− q = v and s = (x+ y)/2, r = (x− y)/2 we get

K(x, y) = − 1

12π

∫ ∞
0

du

∫ ∞
−∞

dv J0

[
1

3
(u3 + 3xv2)1/2

]
eisu+irv. (S62)
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We take the v-integral first:

V ≡
∫ ∞
−∞

dv J0

[
1

3
(u3 + 3uv2)1/2

]
eirv =

∫ ∞
−∞

dv J0

[
u1/2

31/2
(u2/3 + v2)1/2

]
cos rv. (S63)

Writing u2/3 + v2 = z2 and a = u/
√

3, we get

V = 2

∫ ∞
a

dz
z√

z2 − a2
J0

[
u1/2

31/2
z

]
cos r

√
z2 − a2. (S64)

This is the integral 2.12.22.6 from Ref. [S8]:

V = 2
cos[(u/

√
3)
√
u/3− r2]√

u/3− r2
θ(u/3− r2). (S65)

Hence Eq. (S62) reduces to (u = 3r2z)

K(x, y) = − r

2π

∫ ∞
1

dz e3ir
2sz cos[

√
3r3z
√
z − 1]√

z − 1
. (S66)

Changing the variables z = 1 + k2, we get

K(x, y) = − r
π

∫ ∞
0

dk e3ir
2s(1+k2) cos[

√
3r3k(1 + k2)] = − r

2π

∫ ∞
−∞

dk e3ir
2s(1+k2)+i

√
3r3k(1+k2). (S67)

Finally, eliminating the quadratic term (k = (t− s)/r
√

3), we arrive at the Airy-type integral

K(x, y) = − 1

2π
√

3

∫ ∞
−∞

dt exp i

(
t3

3
+ t(r2 − s2) +

2

3

(
3r2s+ s3

))
= − 1√

3
exp i

(
2

3

(
3r2s+ s3

))
Ai(r2 − s2). (S68)

In terms of original variables x and y,

K(x, y) = − 1√
3

exp

(
i
x3 + y3

3

)
Ai(−xy). (S69)

3. Final step

Using Eqs. (S58), (S59) and (S69), we obtain

L(τ, P ) = K(Peθ/3,−Pe−θ/3) = − 1√
3

exp

(
i
2P 3τ

3

)
Ai(P 2) (S70)

As discussed above, that completes the proof of Eq. (S51).
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